Responder
The monthly payment \( R \) needed is \$247.00.
Solución
To find the monthly payment \( R \) needed to accumulate a future value \( A \) in a sinking fund, we can use the formula for the future value of a series of payments (ordinary annuity) compounded at a certain interest rate. The formula is given by:
\[
A = R \times \frac{(1 + i)^{nt} - 1}{i}
\]
Where:
- \( A \) is the future value of the sinking fund.
- \( R \) is the monthly payment.
- \( i \) is the monthly interest rate (annual rate divided by 12).
- \( n \) is the number of compounding periods per year (12 for monthly).
- \( t \) is the number of years.
### Step 1: Extract the known values
- \( A = 6000 \)
- \( r = 8\% = 0.08 \)
- \( t = 2 \)
### Step 2: Calculate the monthly interest rate \( i \)
\[
i = \frac{r}{12} = \frac{0.08}{12}
\]
### Step 3: Calculate the total number of payments \( nt \)
\[
n = 12 \quad \text{(monthly payments)}
\]
\[
nt = 12 \times 2 = 24
\]
### Step 4: Substitute the values into the formula and solve for \( R \)
Rearranging the formula to solve for \( R \):
\[
R = \frac{A \cdot i}{(1 + i)^{nt} - 1}
\]
Now, we will calculate \( i \) and then substitute all values into the formula to find \( R \).
Let's perform the calculations.
1. Calculate \( i \):
\[
i = \frac{0.08}{12}
\]
2. Substitute into the formula for \( R \):
\[
R = \frac{6000 \cdot i}{(1 + i)^{24} - 1}
\]
Now, I will calculate these values.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{0.08}{12}\)
- step1: Convert the expressions:
\(\frac{\frac{2}{25}}{12}\)
- step2: Multiply by the reciprocal:
\(\frac{2}{25}\times \frac{1}{12}\)
- step3: Reduce the numbers:
\(\frac{1}{25}\times \frac{1}{6}\)
- step4: Multiply the fractions:
\(\frac{1}{25\times 6}\)
- step5: Multiply:
\(\frac{1}{150}\)
Calculate or simplify the expression \( 6000*(0.08/12)/((1+(0.08/12))^24-1) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{6000\left(\frac{0.08}{12}\right)}{\left(\left(1+\left(\frac{0.08}{12}\right)\right)^{24}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{6000\left(\frac{0.08}{12}\right)}{\left(1+\left(\frac{0.08}{12}\right)\right)^{24}-1}\)
- step2: Divide the terms:
\(\frac{6000\left(\frac{0.08}{12}\right)}{\left(1+\frac{1}{150}\right)^{24}-1}\)
- step3: Add the numbers:
\(\frac{6000\left(\frac{0.08}{12}\right)}{\left(\frac{151}{150}\right)^{24}-1}\)
- step4: Divide the terms:
\(\frac{6000\times \frac{1}{150}}{\left(\frac{151}{150}\right)^{24}-1}\)
- step5: Multiply the numbers:
\(\frac{40}{\left(\frac{151}{150}\right)^{24}-1}\)
- step6: Subtract the numbers:
\(\frac{40}{\frac{151^{24}-150^{24}}{150^{24}}}\)
- step7: Multiply by the reciprocal:
\(40\times \frac{150^{24}}{151^{24}-150^{24}}\)
- step8: Multiply:
\(\frac{40\times 150^{24}}{151^{24}-150^{24}}\)
### Step 1: Calculate the monthly interest rate \( i \)
\[
i = \frac{0.08}{12} \approx 0.00666667
\]
### Step 2: Calculate the monthly payment \( R \)
Using the rearranged formula:
\[
R = \frac{6000 \cdot 0.00666667}{(1 + 0.00666667)^{24} - 1}
\]
Calculating the denominator:
\[
(1 + 0.00666667)^{24} \approx 1.1616
\]
Thus,
\[
(1 + 0.00666667)^{24} - 1 \approx 1.1616 - 1 \approx 0.1616
\]
Now substituting back into the formula for \( R \):
\[
R \approx \frac{6000 \cdot 0.00666667}{0.1616} \approx \frac{40}{0.1616} \approx 247.00
\]
### Final Calculation
Now, rounding up to the nearest cent, the monthly payment \( R \) is approximately:
\[
R \approx 247.00
\]
Thus, the monthly payment \( R \) needed to accumulate the future value \( A \) is:
\[
\boxed{247.00}
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución