1) \( a^{6} \cdot a^{3}= \) 2) \( a^{-5} \cdot a= \) 3) \( b \cdot b^{x}= \) 4) \( 2^{5} \cdot 2^{2}= \) 5) \( (P s)^{6}= \) 6) \( \left(b^{-2}\right)^{-8}= \) 7) \( (-3)^{a}-4^{a}= \) 8) \( \left(\frac{1}{3}\right)^{x} \cdot\left(\frac{6}{5}\right)^{x} \) a) \( (3 x)^{2}= \) (0) \( \left(3 m n^{2}\right)^{4}= \) 4) \( \left[\frac{a^{2}}{a^{3}}\right)^{-3} \) 12) \( \left[3 \times Y 7^{2}\right]^{0} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
When you multiply terms with the same base, you simply add their exponents! This principle is grounded in the rules of exponents, making calculations with powers easier and more efficient. For instance, \( a^6 \cdot a^3 \) becomes \( a^{6+3} = a^9 \). Simple, right? Don't forget about the special cases like any non-zero number raised to the zero power equals one! That’s why for \( \left[3 \times Y 7^{2}\right]^{0} \), regardless of the values of \( Y \) or \( 7 \), the result is simply 1. Always a fun surprise when you run into those unique exponent properties!
