Pregunta
upstudy study bank question image url

Jina is playing a game in which she spins a spinner with 6 equal-sized slices numbered 1 through 6 . The spinner stops on a numbered slice at random. This game is this: Jina spins the spinner once. She wins \( \$ 1 \) if the spinner stops on the number \( 1, \$ 3 \) if the spinner stops on the number 2 , \( \$ 5 \) if the spinner stops on the number 3 , and \( \$ 7 \) if the spinner stops on the number 4 . She loses \( \$ 8 \) if the spinner stops on 5 or 6 . (a) Find the expected value of playing the game. dollars (b) What can Jina expect in the long run, after playing the game many times? She can expect to win \( \square \) dollars per spin. Jina can expect to lose money. She can expect to lose \( \square \) dollars per spin. Jina can expect to break even (neither gain nor lose money).

Ask by Guzman Sullivan. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The expected value of playing the game is 0 dollars. (b) Jina can expect to break even; she neither gains nor loses money per spin.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To find the expected value of Jina’s game, we need to calculate the payouts for each outcome, weight them by their probabilities, and sum them up. The spinner is fair, which means each slice has a probability of \( \frac{1}{6} \). - Winning \( \$ 1 \) for landing on 1: \( \frac{1}{6} \times 1 = \frac{1}{6} \) - Winning \( \$ 3 \) for landing on 2: \( \frac{1}{6} \times 3 = \frac{3}{6} \) - Winning \( \$ 5 \) for landing on 3: \( \frac{1}{6} \times 5 = \frac{5}{6} \) - Winning \( \$ 7 \) for landing on 4: \( \frac{1}{6} \times 7 = \frac{7}{6} \) - Losing \( \$ 8 \) for landing on 5: \( \frac{1}{6} \times (-8) = -\frac{8}{6} \) - Losing \( \$ 8 \) for landing on 6: \( \frac{1}{6} \times (-8) = -\frac{8}{6} \) Now, let's sum these values together: \[ E(X) = \frac{1}{6} + \frac{3}{6} + \frac{5}{6} + \frac{7}{6} - \frac{8}{6} - \frac{8}{6} \] Combining these gives: \[ E(X) = \frac{1 + 3 + 5 + 7 - 8 - 8}{6} = \frac{1 + 3 + 5 + 7 - 16}{6} = \frac{-0}{6} = 0 \] So, the expected value of playing the game is \( 0 \) dollars. (b) In the long run, Jina can expect to break even (neither gain nor lose money). Since the expected value is \( 0 \), it indicates a fair game without any tilt toward winnings or losses. Thus, she can expect to win \( 0 \) dollars per spin or potentially neither winning nor losing money after many plays.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad