The coordinates of \( \Delta T W O \) are \( T(2,2), W(4,5), O(8,3) \). The triangle is reflected \( R_{y-x+4}(\Delta T W O) \). What are the coordinates of the image \( \Delta T^{\prime} W^{\prime} O^{\prime} \) ?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the coordinates of the reflected triangle \( \Delta T' W' O' \) across the line \( y - x + 4 = 0 \), we follow these steps: 1. **Rewrite the line equation**: The line can be rewritten in slope-intercept form as \( y = x - 4 \). 2. **Calculate the slope of the line**: The slope is 1, indicating a 45-degree angle. 3. **Find perpendicular slopes**: The perpendicular slope is -1 (since the product of slopes 1 and -1 equals -1). 4. **Calculate the intersection with the line**: For point T(2,2), find the equation of the line that runs through T with the perpendicular slope: \[ y - 2 = -1(x - 2) \implies y = -x + 4 \] Set this equal to the line \( y = x - 4 \) to find the intersection: \[ -x + 4 = x - 4 \implies 2x = 8 \implies x = 4 \implies y = 0 \] So, the intersection point is \( (4, 0) \). 5. **Reflect point T**: The midpoint between T(2, 2) and its reflection T’ must be at (4, 0). Let the coordinates of T' be \( (x', y') \). Then: \[ \frac{2 + x'}{2} = 4 \implies x' = 6, \quad \frac{2 + y'}{2} = 0 \implies y' = -2 \] Thus, the reflection of T is \( T'(6, -2) \). Repeat the steps for points W(4,5) and O(8,3): - For point W(4,5): - Intersection is still (4, 0). - Therefore: \[ \frac{4 + x'}{2} = 4 \implies x' = 4, \quad \frac{5 + y'}{2} = 0 \implies y' = -5 \] Hence, \( W'(4, -5) \). - For point O(8,3): - Midpoint strategy again gives: \[ \frac{8 + x'}{2} = 4 \implies x' = 0, \quad \frac{3 + y'}{2} = 0 \implies y' = -3 \] Thus, \( O'(0, -3) \). Putting it all together, the coordinates of the reflected triangle \( \Delta T' W' O' \) are: \[ T'(6, -2), W'(4, -5), O'(0, -3). \]
