Pregunta
upstudy study bank question image url

Write the augmented matrix of the system and use the matrix method to solve the system. \( \begin{array}{l}-x+4 y+3 z=-16 \\ \begin{array}{r}x+y+z=10 \\ x+y+z=0\end{array} \\ \text { Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. } \\ \text { A. This system has exactly one solution. The solution is ( } \\ \text { (Type integers or decimals.) } \\ \text { B. This system has infinitely many solutions of the form } \\ \text { (Type integers or decimals.) } \\ \text { C. This system has no solution. }\end{array} \) ?, z), where \( z \) is any real number.

Ask by Allan Hamilton. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system has no solution.

Solución

To solve the given system of equations using the matrix method, we first need to write the augmented matrix for the system. The system of equations is: 1. \(-x + 4y + 3z = -16\) 2. \(x + y + z = 10\) 3. \(x + y + z = 0\) ### Step 1: Write the Augmented Matrix The augmented matrix for the system can be constructed as follows: \[ \begin{bmatrix} -1 & 4 & 3 & | & -16 \\ 1 & 1 & 1 & | & 10 \\ 1 & 1 & 1 & | & 0 \end{bmatrix} \] ### Step 2: Row Reduction Next, we will perform row operations to reduce this matrix to row echelon form. 1. **Swap Row 1 and Row 2** to make the leading coefficient of the first row positive: \[ \begin{bmatrix} 1 & 1 & 1 & | & 10 \\ -1 & 4 & 3 & | & -16 \\ 1 & 1 & 1 & | & 0 \end{bmatrix} \] 2. **Add Row 1 to Row 2** and **subtract Row 1 from Row 3**: \[ \begin{bmatrix} 1 & 1 & 1 & | & 10 \\ 0 & 5 & 4 & | & -6 \\ 0 & 0 & 0 & | & -10 \end{bmatrix} \] ### Step 3: Analyze the Result The last row of the matrix is \(0 = -10\), which is a contradiction. This indicates that the system of equations is inconsistent. ### Conclusion Since we have reached a contradiction, we conclude that the system has no solution. Thus, the correct choice is: **C. This system has no solution.**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the system of equations using an augmented matrix, we first represent the equations in matrix form. The augmented matrix for the system is: \[ \begin{bmatrix} -1 & 4 & 3 & | & -16 \\ 1 & 1 & 1 & | & 10 \\ 1 & 1 & 1 & | & 0 \end{bmatrix} \] Now we can apply Gaussian elimination to solve for \(x\), \(y\), and \(z\). First, we can subtract the second row from the third row, which gives us: \[ \begin{bmatrix} -1 & 4 & 3 & | & -16 \\ 1 & 1 & 1 & | & 10 \\ 0 & 0 & 0 & | & -10 \end{bmatrix} \] The last row indicates that there is no solution because it states \(0 = -10\). Thus, we conclude that: C. This system has no solution.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad