Pregunta
upstudy study bank question image url

Go-Cart One and Co-Cart Two are on a 360-foot circular track. There is a camera at the center of the track for each go-cart. Camera One is following Go-Cart One, and Camera Two is following Co-Cart Two. If the angle between the two cameras is 40 degrees, how far apart are the two go-carts?

Ask by Mcfarlane Hamilton. in Northern Mariana Islands
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The two go-carts are approximately 39.2 feet apart.

Solución

We start by noting that the go‐carts are on a circular track with a total distance around the circle of 360 feet (i.e. the track’s circumference is 360 feet). This means the radius r of the track is   r = (Circumference)/(2π) = 360/(2π) = 180/π feet. Since the two cameras are located at the center of the circle, they “see” the go‐carts along the radii. The angle between the two radii (where the go‐carts are located) is given as 40°. To find the distance (chord length) between the two go‐carts, we use the chord‐length formula for a circle:   Chord length = 2r sin(θ/2) Plugging in the values, we have   Distance = 2 × (180/π) × sin(40°/2)        = (360/π) × sin 20° Using sin 20° ≈ 0.34202, we get   Distance ≈ (360/π) × 0.34202 Since 360/π ≈ 114.59, then   Distance ≈ 114.59 × 0.34202 ≈ 39.2 feet Thus, the two go‐carts are approximately 39.2 feet apart.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the distance between the two go-carts, we can use the formula for the distance \( d \) between two points on a circle based on the central angle and the radius. The formula is: \[ d = 2r \sin(\frac{\theta}{2}) \] Here, the radius \( r \) of the track is \( 180 \) feet (since the circumference is \( 360 \) feet, \( r = \frac{360}{2\pi} \approx 57.3 \text{ feet} \)). The angle \( \theta \) is \( 40 \) degrees. Converting that to radians gives us approximately \( 0.698 \) radians. Substituting these values into the formula we get: \[ d = 2 \cdot 180 \sin(20) \] Calculating \( d \) yields: \[ d \approx 2 \cdot 180 \cdot 0.342 = 122.64 \text{ feet} \] So, the distance between Go-Cart One and Co-Cart Two is approximately **122.64 feet**. --- The world of go-carts isn’t just about racing; it’s rich with physics! Understanding real-world application of circular motion can explain why your favorite ride is so exhilarating! The concepts of radius, angles, and trigonometry help engineers design tracks that homeowners cannot resist! Ever wonder why your angle calculations sometimes seem off? A common pitfall in geometry and trigonometry is not converting degrees to radians when necessary! Misinterpreting these units can lead you astray, so always double-check! Stay sharp, and follow the track of math correctly!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad