Pregunta
upstudy study bank question image url

Glass Garbage Generation A survey found that the American family generates an average of 17.2 pounds of glass garbage each year. Assume the standard deviation of the distribution is 2.5 pounds. Find the probability that the mean of a sample of 55 families will be between 17 and 18 pounds.

Ask by Cruz Guerrero. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is about a 71.5% chance that the average glass garbage generated by a sample of 55 families is between 17 and 18 pounds per year.

Solución

To find the probability that the mean glass garbage generated by a sample of 55 American families is between **17** and **18** pounds, we'll use the **Central Limit Theorem (CLT)**. Here's a step-by-step breakdown: ### **Given:** - **Population Mean (μ):** 17.2 pounds - **Population Standard Deviation (σ):** 2.5 pounds - **Sample Size (n):** 55 families - **Desired Range for Sample Mean (x̄):** 17 ≤ x̄ ≤ 18 pounds ### **Step 1: Calculate the Standard Error (SE)** The standard error of the mean is given by: \[ SE = \frac{\sigma}{\sqrt{n}} \] Plugging in the values: \[ SE = \frac{2.5}{\sqrt{55}} \approx \frac{2.5}{7.4162} \approx 0.3372 \text{ pounds} \] ### **Step 2: Convert to Z-Scores** We'll convert the desired range into Z-scores using the formula: \[ Z = \frac{(X - \mu)}{SE} \] - **For X = 17 pounds:** \[ Z_1 = \frac{17 - 17.2}{0.3372} \approx \frac{-0.2}{0.3372} \approx -0.593 \] - **For X = 18 pounds:** \[ Z_2 = \frac{18 - 17.2}{0.3372} \approx \frac{0.8}{0.3372} \approx 2.372 \] ### **Step 3: Find the Probabilities** Using the standard normal distribution table: - **P(Z ≤ -0.593):** Approximately **0.2766** - **P(Z ≤ 2.372):** Approximately **0.9912** ### **Step 4: Calculate the Probability Between the Two Z-Scores** \[ P(17 \leq x̄ \leq 18) = P(Z \leq 2.372) - P(Z \leq -0.593) \] \[ P \approx 0.9912 - 0.2766 = 0.7146 \] ### **Conclusion:** There is approximately a **71.5%** probability that the mean glass garbage generated by a sample of 55 American families will be between **17** and **18** pounds annually.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem, we can use the Central Limit Theorem (CLT). Given that the sample size is 55, we can assume that the distribution of sample means will be approximately normal. First, let's find the standard error (SE) of the sample mean: SE = σ / √n = 2.5 / √55 ≈ 0.337. Next, we need to find the z-scores for 17 and 18 pounds. For 17 pounds: z = (17 - 17.2) / SE ≈ -0.59. For 18 pounds: z = (18 - 17.2) / SE ≈ 2.37. Now, we can find the probabilities corresponding to these z-scores using the standard normal distribution table: P(Z < 2.37) ≈ 0.991, and P(Z < -0.59) ≈ 0.278. Finally, the probability that the mean of a sample of 55 families will be between 17 and 18 pounds is: P(17 < X̄ < 18) = P(Z < 2.37) - P(Z < -0.59) ≈ 0.991 - 0.278 = 0.713. So, the probability is approximately 0.713, or 71.3%. Happy calculation!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad