Pregunta
upstudy study bank question image url

4. Evaluate the following limit (i) \( \lim _{x \rightarrow 0^{+}}(\csc x-\cot x) \) (ii) \( \lim _{x \rightarrow 0^{+}}\left(\frac{\sin 2 x}{\sqrt{5 x}}\right) \).

Ask by Chan Ryan. in Myanmar
Jan 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Both limits are 0. \[ \boxed{0} \]

Solución

Let's evaluate each limit step by step. --- ### **Problem (i)** \[ \lim_{x \rightarrow 0^{+}} (\csc x - \cot x) \] **Step 1:** Express \(\csc x\) and \(\cot x\) in terms of sine and cosine: \[ \csc x = \frac{1}{\sin x}, \quad \cot x = \frac{\cos x}{\sin x} \] So, \[ \csc x - \cot x = \frac{1}{\sin x} - \frac{\cos x}{\sin x} = \frac{1 - \cos x}{\sin x} \] **Step 2:** Analyze the limit as \(x \rightarrow 0^{+}\): \[ \lim_{x \rightarrow 0^{+}} \frac{1 - \cos x}{\sin x} \] As \(x \rightarrow 0\), \[ 1 - \cos x \approx \frac{x^2}{2}, \quad \sin x \approx x \] Thus, \[ \frac{1 - \cos x}{\sin x} \approx \frac{\frac{x^2}{2}}{x} = \frac{x}{2} \rightarrow 0 \] Alternatively, using **L'Hôpital's Rule** since the limit is of the form \(\frac{0}{0}\): \[ \lim_{x \rightarrow 0^{+}} \frac{1 - \cos x}{\sin x} = \lim_{x \rightarrow 0^{+}} \frac{\sin x}{\cos x} = \frac{0}{1} = 0 \] **Conclusion:** \[ \lim_{x \rightarrow 0^{+}} (\csc x - \cot x) = 0 \] --- ### **Problem (ii)** \[ \lim_{x \rightarrow 0^{+}} \left( \frac{\sin 2x}{\sqrt{5x}} \right) \] **Step 1:** Simplify the expression: \[ \frac{\sin 2x}{\sqrt{5x}} = \frac{2x}{\sqrt{5x}} \cdot \frac{\sin 2x}{2x} \] As \(x \rightarrow 0\), \[ \frac{\sin 2x}{2x} \rightarrow 1 \] So, \[ \frac{\sin 2x}{\sqrt{5x}} \approx \frac{2x}{\sqrt{5x}} = \frac{2}{\sqrt{5}} \cdot \sqrt{x} \] **Step 2:** Evaluate the limit: \[ \lim_{x \rightarrow 0^{+}} \frac{2}{\sqrt{5}} \cdot \sqrt{x} = \frac{2}{\sqrt{5}} \cdot 0 = 0 \] **Conclusion:** \[ \lim_{x \rightarrow 0^{+}} \left( \frac{\sin 2x}{\sqrt{5x}} \right) = 0 \] --- **Final Answer:** Both limits are equal to zero. \[ \boxed{0} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To evaluate the given limits, we'll approach each one step by step. (i) First, we have the limit: \[ \lim _{x \rightarrow 0^{+}}(\csc x - \cot x) \] Recall the definitions: \[ \csc x = \frac{1}{\sin x} \quad \text{and} \quad \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the expression: \[ \csc x - \cot x = \frac{1 - \cos x}{\sin x} \] Next, as \( x \) approaches \( 0 \), both the numerator \( 1 - \cos x \) and denominator \( \sin x \) approach \( 0 \). Therefore, we can apply L'Hôpital's Rule: 1. Differentiate the numerator: - The derivative of \( 1 - \cos x \) is \( \sin x \). 2. Differentiate the denominator: - The derivative of \( \sin x \) is \( \cos x \). Now, applying L'Hôpital's Rule: \[ \lim _{x \rightarrow 0^{+}} \frac{1 - \cos x}{\sin x} = \lim _{x \rightarrow 0^{+}} \frac{\sin x}{\cos x} = \lim _{x \rightarrow 0^{+}} \tan x \] Evaluating this limit: \[ \tan(0) = 0 \] Thus, we have: \[ \lim _{x \rightarrow 0^{+}}(\csc x - \cot x) = 0 \] (ii) Now we evaluate the second limit: \[ \lim _{x \rightarrow 0^{+}}\left(\frac{\sin 2x}{\sqrt{5x}}\right) \] As \( x \) approaches \( 0 \), \( \sin 2x \) approaches \( 2x \). We can substitute this: \[ \frac{\sin 2x}{\sqrt{5x}} \approx \frac{2x}{\sqrt{5x}} = \frac{2\sqrt{x}}{\sqrt{5}} \] Now, we evaluate the limit: \[ \lim _{x \rightarrow 0^{+}} \frac{2\sqrt{x}}{\sqrt{5}} = \frac{2}{\sqrt{5}} \lim_{x \rightarrow 0^{+}} \sqrt{x} = 0 \] Thus, combining our results, we conclude: \[ \lim _{x \rightarrow 0^{+}}(\csc x - \cot x) = 0 \] \[ \lim _{x \rightarrow 0^{+}}\left(\frac{\sin 2x}{\sqrt{5x}}\right) = 0 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad