4. Evaluate the following limit (i) \( \lim _{x \rightarrow 0^{+}}(\csc x-\cot x) \) (ii) \( \lim _{x \rightarrow 0^{+}}\left(\frac{\sin 2 x}{\sqrt{5 x}}\right) \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To evaluate the given limits, we'll approach each one step by step. (i) First, we have the limit: \[ \lim _{x \rightarrow 0^{+}}(\csc x - \cot x) \] Recall the definitions: \[ \csc x = \frac{1}{\sin x} \quad \text{and} \quad \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the expression: \[ \csc x - \cot x = \frac{1 - \cos x}{\sin x} \] Next, as \( x \) approaches \( 0 \), both the numerator \( 1 - \cos x \) and denominator \( \sin x \) approach \( 0 \). Therefore, we can apply L'Hôpital's Rule: 1. Differentiate the numerator: - The derivative of \( 1 - \cos x \) is \( \sin x \). 2. Differentiate the denominator: - The derivative of \( \sin x \) is \( \cos x \). Now, applying L'Hôpital's Rule: \[ \lim _{x \rightarrow 0^{+}} \frac{1 - \cos x}{\sin x} = \lim _{x \rightarrow 0^{+}} \frac{\sin x}{\cos x} = \lim _{x \rightarrow 0^{+}} \tan x \] Evaluating this limit: \[ \tan(0) = 0 \] Thus, we have: \[ \lim _{x \rightarrow 0^{+}}(\csc x - \cot x) = 0 \] (ii) Now we evaluate the second limit: \[ \lim _{x \rightarrow 0^{+}}\left(\frac{\sin 2x}{\sqrt{5x}}\right) \] As \( x \) approaches \( 0 \), \( \sin 2x \) approaches \( 2x \). We can substitute this: \[ \frac{\sin 2x}{\sqrt{5x}} \approx \frac{2x}{\sqrt{5x}} = \frac{2\sqrt{x}}{\sqrt{5}} \] Now, we evaluate the limit: \[ \lim _{x \rightarrow 0^{+}} \frac{2\sqrt{x}}{\sqrt{5}} = \frac{2}{\sqrt{5}} \lim_{x \rightarrow 0^{+}} \sqrt{x} = 0 \] Thus, combining our results, we conclude: \[ \lim _{x \rightarrow 0^{+}}(\csc x - \cot x) = 0 \] \[ \lim _{x \rightarrow 0^{+}}\left(\frac{\sin 2x}{\sqrt{5x}}\right) = 0 \]
preguntas relacionadas
