Solve in simplest standard form: \( (2 x-2)\left(3 x^{2}+4 x-5\right)= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To simplify the expression \( (2x - 2)(3x^2 + 4x - 5) \), we can start by factoring out the common factor from the first term: \[ 2(x - 1)(3x^2 + 4x - 5) \] Next, we will apply the distributive property (or FOIL method) to expand the two expressions: \[ = 2[(x - 1)(3x^2) + (x - 1)(4x) + (x - 1)(-5)] \] Calculating each of these: 1. \( (x - 1)(3x^2) = 3x^3 - 3x^2 \) 2. \( (x - 1)(4x) = 4x^2 - 4x \) 3. \( (x - 1)(-5) = -5x + 5 \) Now, combining these results: \[ 3x^3 - 3x^2 + 4x^2 - 4x - 5x + 5 \] Combine like terms: \[ = 3x^3 + (-3x^2 + 4x^2) + (-4x - 5x) + 5 \] \[ = 3x^3 + x^2 - 9x + 5 \] Finally, multiply the entire polynomial by 2 from the factor we initially factored out: \[ = 2(3x^3 + x^2 - 9x + 5) \] \[ = 6x^3 + 2x^2 - 18x + 10 \] So, the simplified standard form of the expression is: \[ \boxed{6x^3 + 2x^2 - 18x + 10} \]
