Pregunta
upstudy study bank question image url

Question 1 Given the number of trials and the probability of success, determine the probability indicated: \( \mathrm{n}=12, \mathrm{p}=0.7 \), find \( \mathrm{P}(7 \) successes) \( \mathrm{P}(7 \) successes \( )= \) Submit Question

Ask by Schultz Boyd. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of 7 successes in 12 trials with a success probability of 0.7 is approximately 0.1585.

Solución

To find the probability of 7 successes in 12 trials with a probability of success of 0.7, we can use the binomial probability formula: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] where: - \( n \) is the number of trials (12 in this case), - \( k \) is the number of successes (7 in this case), - \( p \) is the probability of success (0.7 in this case), - \( \binom{n}{k} \) is the binomial coefficient, which represents the number of ways to choose \( k \) successes out of \( n \) trials. Substitute the given values into the formula: \[ P(7 \text{ successes}) = \binom{12}{7} (0.7)^7 (1-0.7)^{12-7} \] Now, we can calculate the probability using the binomial probability formula. Calculate the value by following steps: - step0: Calculate: \( { }_{12}C_{7}\times 0.7^{7}\left(1-0.7\right)^{12-7}\) - step1: Subtract the numbers: \( { }_{12}C_{7}\times 0.7^{7}\times 0.3^{12-7}\) - step2: Subtract the numbers: \( { }_{12}C_{7}\times 0.7^{7}\times 0.3^{5}\) - step3: Expand the expression: \(\frac{12!}{7!\times \left(12-7\right)!}\times 0.7^{7}\times 0.3^{5}\) - step4: Subtract the numbers: \(\frac{12!}{7!\times 5!}\times 0.7^{7}\times 0.3^{5}\) - step5: Reduce the fraction: \(\frac{12\times 11\times 10\times 9\times 8}{5!}\times 0.7^{7}\times 0.3^{5}\) - step6: Multiply: \(\frac{95040}{5!}\times 0.7^{7}\times 0.3^{5}\) - step7: Divide the terms: \(792\times 0.7^{7}\times 0.3^{5}\) - step8: Convert the expressions: \(792\left(\frac{7}{10}\right)^{7}\times 0.3^{5}\) - step9: Convert the expressions: \(792\left(\frac{7}{10}\right)^{7}\left(\frac{3}{10}\right)^{5}\) - step10: Simplify: \(792\times \frac{7^{7}}{10^{7}}\times \left(\frac{3}{10}\right)^{5}\) - step11: Multiply the terms: \(\frac{99\times 7^{7}}{16\times 5^{7}}\times \left(\frac{3}{10}\right)^{5}\) - step12: Evaluate the power: \(\frac{99\times 7^{7}}{16\times 5^{7}}\times \frac{3^{5}}{10^{5}}\) - step13: Multiply the fractions: \(\frac{99\times 7^{7}\times 3^{5}}{16\times 5^{7}\times 10^{5}}\) - step14: Multiply: \(\frac{24057\times 7^{7}}{16\times 5^{7}\times 10^{5}}\) The probability of 7 successes in 12 trials with a probability of success of 0.7 is approximately 0.1585.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability of getting exactly 7 successes out of 12 trials with a success probability of 0.7, we can use the binomial probability formula: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] Plugging in the values: \[ P(7) = \binom{12}{7} (0.7)^7 (0.3)^{5} \] The calculation for \( \binom{12}{7} \) gives us 792. Continuing with that, calculate \( (0.7)^7 \) and \( (0.3)^5 \): Now, \( P(7) = 792 \times (0.7)^7 \times (0.3)^5 \). After crunching the numbers, you'll find \( P(7) \) is approximately 0.1935. So, \( P(7 \text{ successes}) \approx 0.1935 \). The binomial distribution is not just numbers; it's a tool used by statisticians and data analysts to predict outcomes based on past data! It's like rolling a die with a twist: you can predict how likely an event is to happen over multiple trials. Whether it's for quality control in manufacturing or understanding customer behavior, it's all about estimating the chances! Imagine you’re planning a party and expecting 12 guests, but you're not sure how many will actually show up. If you know that on average, 70% of your friends RSVP "yes," you can apply the binomial distribution to get a sense of how many to expect. It can help you decide on the right amount of pizza, drinks, and party favors to get—all while keeping calculations fun and a bit suspenseful!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad