Question In \( \triangle Q R S, \overline{S Q} \cong \overline{R S} \) and \( \mathrm{m} \angle R=48^{\circ} \). Find \( \mathrm{m} \angle S \). Answer Attempt 2 out of 3 Submit Answer
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
In \( \triangle QRS \), since \( \overline{SQ} \cong \overline{RS} \), it indicates that the triangle is isosceles. In isosceles triangles, the angles opposite to the congruent sides are also equal. Therefore, the angles \( \angle Q \) and \( \angle S \) are congruent. To find \( \mathrm{m} \angle S \), we can use the triangle angle sum property, which states that the sum of the interior angles in any triangle is \( 180^\circ \). Hence, we have: \[ \mathrm{m} \angle R + \mathrm{m} \angle Q + \mathrm{m} \angle S = 180^\circ \] Given \( \mathrm{m} \angle R = 48^\circ \), we can express \( \mathrm{m} \angle Q \) and \( \mathrm{m} \angle S \) as \( x \) (since they are equal). This gives us the equation: \[ 48^\circ + x + x = 180^\circ \] Solving for \( x \): \[ 48^\circ + 2x = 180^\circ \] \[ 2x = 180^\circ - 48^\circ \] \[ 2x = 132^\circ \] \[ x = 66^\circ \] Thus, \( \mathrm{m} \angle S = 66^\circ \).
