Pregunta

Systems of Equations Solve the system of equations by graphing. System of Equations \[ \begin{array}{l} 3 y-9 x=-18 \\ -y-4 x=-15 \end{array} \] Identify the Solution to the System of Equations as an Ordered Pair. Write \( D N E \) if the Solution does not exist. Write oo ( \( \infty \) ) if infinitely many solutions exist: Solution: \( \square \)

Ask by Malone Vaughan. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the system of equations is \( (3, 3) \).

Solución

Solve the system of equations \( 3y-9x=-18;-y-4x=-15\). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}3y-9x=-18\\-y-4x=-15\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}3y-9x=-18\\y=15-4x\end{array}\right.\) - step2: Substitute the value of \(y:\) \(3\left(15-4x\right)-9x=-18\) - step3: Simplify: \(45-21x=-18\) - step4: Move the constant to the right side: \(-21x=-18-45\) - step5: Subtract the numbers: \(-21x=-63\) - step6: Change the signs: \(21x=63\) - step7: Divide both sides: \(\frac{21x}{21}=\frac{63}{21}\) - step8: Divide the numbers: \(x=3\) - step9: Substitute the value of \(x:\) \(y=15-4\times 3\) - step10: Calculate: \(y=3\) - step11: Calculate: \(\left\{ \begin{array}{l}x=3\\y=3\end{array}\right.\) - step12: Check the solution: \(\left\{ \begin{array}{l}x=3\\y=3\end{array}\right.\) - step13: Rewrite: \(\left(x,y\right) = \left(3,3\right)\) The solution to the system of equations is \( (x, y) = (3, 3) \). Therefore, the solution to the system of equations is an ordered pair, and the answer is \( \square \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To begin solving the system by graphing, you can rewrite both equations in slope-intercept form (y = mx + b): 1. For the first equation, \(3y - 9x = -18\), rearranging gives: \[ y = 3x - 6 \] 2. For the second equation, \(-y - 4x = -15\), rearranging gives: \[ y = -4x + 15 \] Plotting these two lines on a graph will help you visually find the point of intersection, which represents the solution. Where the lines cross is the point that satisfies both equations simultaneously! The two lines intersect at the point (3, 3). Therefore, the solution to the system of equations is \( (3, 3) \). Solution: \( (3, 3) \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad