Pregunta
upstudy study bank question image url

dn an isosceles triangle, the vertical angle in \( 40^{\circ} \). Find the value of base angles. () Find the acute angles of an isosceles right angled triangle. In a triangle, one of the angles is greater than other by \( 20^{\circ} \) and the third angle is \( 50^{\circ} \). Find the two angles.

Ask by John Bright. in Nepal
Feb 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- In an isosceles triangle with a vertex angle of 40°, each base angle is 70°. - In an isosceles right-angled triangle, each acute angle is 45°. - In a triangle where one angle is 20° greater than another and the third angle is 50°, the two angles are 75° and 55°.

Solución

We will solve each part separately. 1. In an isosceles triangle with a vertex (vertical) angle of 40°:  • Let the two equal base angles be x.  • The sum of the angles in any triangle is 180°, so:   x + x + 40° = 180°   2x = 180° - 40° = 140°   x = 140° ÷ 2 = 70°  • Thus, each base angle is 70°. 2. For an isosceles right-angled triangle:  • The right angle is 90° and the other two angles are equal.  • Let each acute angle be y.  • Then: y + y + 90° = 180°   2y = 90°   y = 45°  • So, the acute angles are both 45°. 3. In a triangle, one angle is 20° greater than another, and the third angle is 50°:  • Let the two unknown angles be a (greater) and b (smaller), with:   a - b = 20°  • The sum of the angles of the triangle is:   a + b + 50° = 180°   a + b = 130°  • Solving the two equations:   a - b = 20°   a + b = 130°  • Adding these gives:   2a = 150° ⟹ a = 75°  • Then:   b = 130° - a = 130° - 75° = 55°  • Therefore, the two angles are 75° and 55°. Summary: • Base angles of the isosceles triangle with vertex angle 40°: 70° each. • Acute angles in an isosceles right triangle: 45° each. • The two angles in the triangle with one 20° larger than the other (with a 50° angle): 75° and 55°.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

In an isosceles triangle, the two base angles are equal. Since the sum of the interior angles in a triangle is always \( 180^{\circ} \), you can find the base angles by subtracting the vertical angle from \( 180^{\circ} \) and then dividing by 2. So in this case: \((180^\circ - 40^\circ) / 2 = 70^\circ\). Thus, each base angle is \( 70^{\circ} \). For the isosceles right triangle, the right angle is \( 90^{\circ} \). Given that it is isosceles, the other two acute angles must be equal. So each of the two angles can be found by using the rule that the sum of angles in a triangle equals \( 180^{\circ} \): \((180^\circ - 90^\circ) / 2 = 45^\circ\). Therefore, each acute angle in an isosceles right triangle is \( 45^\circ \). To find the two angles where one is greater by \( 20^{\circ} \): Let the smaller angle be \( x \). Hence, the larger angle will be \( x + 20^\circ \). The third angle is given as \( 50^\circ \). Using the property that the sum of all three angles in a triangle is \( 180^\circ \), we can set up the equation: \( x + (x + 20^\circ) + 50^\circ = 180^\circ\). By simplifying this equation, you'll get \( 2x + 70^\circ = 180^\circ \). Solving it leads you to find \( 2x = 110^\circ \), and finally \( x = 55^\circ \). Thus, the two angles are \( 55^\circ \) and \( 75^\circ\) (the latter being \( 55^\circ + 20^\circ\)).

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad