Pregunta
upstudy study bank question image url

1.3. In the geometric series: \( a+a r+a r^{2}+\cdots+a r^{n-1}, a \) is the first term and \( r \) is the common ratio. Prove that \( S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \) for \( r \neq 1 \) QUESTION 2 2.1. In a peometric progression the \( 7^{\text {th }} \) term is \( \frac{1}{128} \) and the \( 11^{\text {th }} \) term is \( \frac{1}{2048^{\circ}} \) 2.1.1. Calculate the common ratio and the first term. 2.1.2. Is this sequence convergent? Substantiate your answer.

Ask by Ball Hills. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- Common ratio \( r = \frac{1}{2} \) - First term \( a = \frac{1}{2} \) - The sequence is convergent.

Solución

Let's solve the problems step by step. ### Question 1: Proving the formula for the sum of a geometric series The sum of the first \( n \) terms of a geometric series is given by: \[ S_n = a + ar + ar^2 + \cdots + ar^{n-1} \] To derive the formula for \( S_n \), we can multiply the entire series by the common ratio \( r \): \[ r S_n = ar + ar^2 + ar^3 + \cdots + ar^n \] Now, we can subtract the second equation from the first: \[ S_n - r S_n = a + ar + ar^2 + \cdots + ar^{n-1} - (ar + ar^2 + ar^3 + \cdots + ar^n) \] This simplifies to: \[ S_n(1 - r) = a - ar^n \] Rearranging gives us: \[ S_n = \frac{a - ar^n}{1 - r} \] Factoring out \( a \) from the numerator: \[ S_n = \frac{a(1 - r^n)}{1 - r} \] Since \( r \neq 1 \), we can rewrite this as: \[ S_n = \frac{a(r^n - 1)}{r - 1} \] Thus, we have proven that: \[ S_n = \frac{a(r^n - 1)}{r - 1} \quad \text{for } r \neq 1 \] ### Question 2: Finding the common ratio and first term of a geometric progression Given: - The \( 7^{\text{th}} \) term \( T_7 = \frac{1}{128} \) - The \( 11^{\text{th}} \) term \( T_{11} = \frac{1}{2048} \) The general formula for the \( n^{\text{th}} \) term of a geometric progression is: \[ T_n = ar^{n-1} \] From the given information, we can write: 1. \( T_7 = ar^{6} = \frac{1}{128} \) (Equation 1) 2. \( T_{11} = ar^{10} = \frac{1}{2048} \) (Equation 2) Now, we can divide Equation 2 by Equation 1 to eliminate \( a \): \[ \frac{ar^{10}}{ar^{6}} = \frac{\frac{1}{2048}}{\frac{1}{128}} \] This simplifies to: \[ r^{4} = \frac{128}{2048} \] Calculating the right side: \[ \frac{128}{2048} = \frac{1}{16} \] Thus, we have: \[ r^{4} = \frac{1}{16} \] Taking the fourth root of both sides: \[ r = \frac{1}{2} \] Now, we can substitute \( r \) back into Equation 1 to find \( a \): \[ ar^{6} = \frac{1}{128} \] Substituting \( r = \frac{1}{2} \): \[ a\left(\frac{1}{2}\right)^{6} = \frac{1}{128} \] Calculating \( \left(\frac{1}{2}\right)^{6} = \frac{1}{64} \): \[ a \cdot \frac{1}{64} = \frac{1}{128} \] Multiplying both sides by 64: \[ a = \frac{64}{128} = \frac{1}{2} \] ### Summary of Results 2.1.1. The common ratio \( r \) is \( \frac{1}{2} \) and the first term \( a \) is \( \frac{1}{2} \). 2.1.2. To determine if the sequence is convergent, we look at the common ratio \( r \): Since \( |r| < 1 \) (specifically \( r = \frac{1}{2} \)), the geometric progression converges to 0. Thus, the sequence is convergent. ### Final Answers - Common ratio \( r = \frac{1}{2} \) - First term \( a = \frac{1}{2} \) - The sequence is convergent.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To prove that \( S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \) for the sum of a geometric series, consider the sum \( S_n = a + ar + ar^2 + \cdots + ar^{n-1} \). If you multiply both sides by \( r \), you'll have \( S_n r = ar + ar^2 + ar^3 + \cdots + ar^n \). Now, subtract the second equation from the first, resulting in \( S_n - S_n r = a - ar^n \). Factoring gives you \( S_n(1 - r) = a(1 - r^n) \). Dividing by \( 1 - r \) leads us to the formula for \( S_n \) when \( r \neq 1 \), proving the statement. To find the common ratio and first term of the progression, start with the formulas for the \( n^{\text{th}} \) term of a geometric sequence: \( T_7 = ar^6 = \frac{1}{128} \) and \( T_{11} = ar^{10} = \frac{1}{2048} \). Dividing these equations, you can eliminate \( a \) to find \( r \): \( \frac{T_{11}}{T_7} = \frac{ar^{10}}{ar^{6}} = r^4 = \frac{1/2048}{1/128} = \frac{1}{16} \). Thus, \( r = \frac{1}{2} \). Substituting \( r \) back into the equation for \( T_7 \) lets you find \( a \). As for convergence, since \( |r| < 1 \), the series converges, and its limit approaches zero as \( n \) approaches infinity.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad