Curt can be paid in one of two ways for the furniture he sells. Plan A: Salary of \( \$ 650 \) per month, plus a commission of \( 10 \% \) of sales. Plan B: Salary of \( \$ 1050 \) per month, plus a commission of \( 15 \% \) of sales in excess of \( \$ 7000 \). For what amount of monthly sales is plan B better than plan \( A \), assuming Curt's sales are always more than \( \$ 7000 \) ? Plan B is better than Plan A when Curt's sales are more than \( \$ \square \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To determine when Plan B is better than Plan A, let's break down the earnings for each plan based on monthly sales \( S \). **Plan A:** Earnings = \( 650 + 0.10S \) **Plan B (for sales over \$7000):** Earnings = \( 1050 + 0.15(S - 7000) \) Simplifying this gives us: Earnings = \( 1050 + 0.15S - 1050 \) = \( 0.15S \) Now we want Plan B to be better than Plan A: \( 0.15S > 650 + 0.10S \) Subtracting \( 0.10S \) from each side gives us: \( 0.05S > 650 \) Dividing by \( 0.05 \): \( S > 13000 \) So, Plan B is better than Plan A when Curt's sales are more than **\$13,000**. Let’s keep that entrepreneurial spirit blazing and focus on those hefty commissions!
