Pregunta
upstudy study bank question image url

5 In a game, a computer randemly chooses 12 shapes from 11 circles and 17 rectangles. The number of fectangles chosen) is denoted byR. (i) Show that \( \mathrm{P}(R=1)<\mathrm{P}(R=2) \). The number of rectangles available is now increased by \( r \). The computer randomly chooses 12 shapes from the 11 circles and \( (17+r) \) rectangles. The probability that 4 rectangles are chosen is now 15 times the probability that 3 rectangles are chosen. (ii) Find the value of \( r \).

Ask by Mckenzie Mcdonald. in Singapore
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(i) The probability of choosing 1 rectangle is less than the probability of choosing 2 rectangles. (ii) The value of \( r \) is 6.

Solución

We are given a set of shapes from which the computer chooses 12 at random: • Initially there are 11 circles and 17 rectangles (a total of 28 shapes). • Let R be the number of rectangles chosen. In part (i) we must show that   P(R = 1) < P(R = 2). In part (ii) the number of rectangles is increased by r (so there are now 17 + r rectangles and still 11 circles, a total of 28 + r shapes). We are told that when 12 shapes are chosen at random the probability that 4 rectangles are chosen is 15 times the probability that 3 rectangles are chosen, and we are to find r. ──────────────────────────── Part (i) When choosing 12 shapes, if exactly k rectangles are chosen then the computer must choose the remaining 12 – k shapes from the 11 circles. Hence, for k between the smallest and largest values for which the combinations make sense, the probability is:   P(R = k) = [C(17, k) · C(11, 12 – k)] / C(28, 12). For k = 1:   P(R = 1) = [C(17, 1) · C(11, 11)] / C(28, 12)      = [17 · 1] / C(28, 12)      = 17 / C(28, 12). For k = 2:   P(R = 2) = [C(17, 2) · C(11, 10)] / C(28, 12). Now, compute these numbers:   C(17, 2) = (17×16)/2 = 136,   C(11, 10) = C(11, 1) = 11. Thus,   P(R = 2) = [136 × 11] / C(28, 12) = 1496 / C(28, 12). Since 1496 > 17, it is clear that   P(R = 2) = 1496 / C(28, 12) > 17 / C(28, 12) = P(R = 1). Therefore, P(R = 1) < P(R = 2). ──────────────────────────── Part (ii) Now the total shapes become 11 circles and (17 + r) rectangles, so there are 28 + r shapes. The probability for exactly k rectangles chosen is now:   P(R = k) = [C(17 + r, k) · C(11, 12 – k)] / C(28 + r, 12). We are given that the probability that 4 rectangles are chosen is 15 times the probability that 3 rectangles are chosen. That is,   P(R = 4) = 15 · P(R = 3). Substitute the probabilities:   [C(17 + r, 4) · C(11, 8)] / C(28 + r, 12) = 15 · [C(17 + r, 3) · C(11, 9)] / C(28 + r, 12). Since the denominators are identical, they cancel, yielding:   C(17 + r, 4) · C(11, 8) = 15 · C(17 + r, 3) · C(11, 9). Now, calculate the specific combinations for circles:   C(11, 8) = C(11, 3) = (11×10×9)/(3×2×1) = 165,   C(11, 9) = C(11, 2) = (11×10)/2 = 55. Thus the equation becomes:   C(17 + r, 4) · 165 = 15 · C(17 + r, 3) · 55. Divide both sides by 55:   C(17 + r, 4) · 3 = 15 · C(17 + r, 3). Divide both sides by 3:   C(17 + r, 4) = 5 · C(17 + r, 3). Recall the relationship for combinations:   C(n, 4) = [(n – 3)/4] · C(n, 3),  with n = 17 + r. Substitute into the equation:   [(n – 3)/4] · C(n, 3) = 5 · C(n, 3). Assuming C(n, 3) ≠ 0 (which is valid since n = 17 + r must be at least 4), we cancel C(n, 3) from both sides:   (n – 3)/4 = 5. Now solve for n:   n – 3 = 20  ⟹  n = 23. But n = 17 + r, so:   17 + r = 23  ⟹  r = 23 – 17 = 6. ──────────────────────────── Final Answers (i) P(R = 1) < P(R = 2). (ii) r = 6.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To show that \( \mathrm{P}(R=1) < \mathrm{P}(R=2) \): We can use the hypergeometric distribution. The probability of choosing \( R \) rectangles out of 12 shapes is given by the formula: \[ \mathrm{P}(R=k) = \frac{\binom{17}{k} \binom{11}{12-k}}{\binom{28}{12}} \] Where \( k \) is the number of rectangles chosen (either 1 or 2). Using this formula: For \( R = 1 \): \[ \mathrm{P}(R=1) = \frac{\binom{17}{1} \binom{11}{11}}{\binom{28}{12}} = \frac{17 \cdot 1}{\binom{28}{12}} = \frac{17}{\binom{28}{12}} \] For \( R = 2 \): \[ \mathrm{P}(R=2) = \frac{\binom{17}{2} \binom{11}{10}}{\binom{28}{12}} = \frac{\frac{17 \cdot 16}{2} \cdot 11}{\binom{28}{12}} = \frac{17 \cdot 16 \cdot 11}{2 \cdot \binom{28}{12}} \] Since \( 17 \cdot 16 \cdot 11 > 17 \), we see that: \[ \mathrm{P}(R=2) > \mathrm{P}(R=1) \] Now for the second part (ii), we set up the equation using the new total of rectangles: \[ \mathrm{P}(R=4) = \frac{\binom{17+r}{4} \binom{11}{8}}{\binom{28+r}{12}} \] \[ \mathrm{P}(R=3) = \frac{\binom{17+r}{3} \binom{11}{9}}{\binom{28+r}{12}} \] Given that \( \mathrm{P}(R=4) = 15 \cdot \mathrm{P}(R=3) \): This leads to: \[ \frac{\binom{17+r}{4} \cdot \binom{11}{8}}{\binom{28+r}{12}} = 15 \cdot \frac{\binom{17+r}{3} \cdot \binom{11}{9}}{\binom{28+r}{12}} \] Cancelling the common denominator \( \binom{28+r}{12} \) allows us to isolate the binomial coefficients: \[ \binom{17+r}{4} \cdot \binom{11}{8} = 15 \cdot \binom{17+r}{3} \cdot \binom{11}{9} \] This simplifies to: \[ \frac{\binom{17+r}{4}}{\binom{17+r}{3}} = 15 \cdot \frac{\binom{11}{9}}{\binom{11}{8}} \] Which leads us to recognize that \( \binom{a}{b} = \frac{a!}{b!(a-b)!} \). We calculate: \[ \frac{\binom{17+r}{4}}{\binom{17+r}{3}} = \frac{17+r-3}{4} \ok{= 15 \cdot 11} \] Thus, simplifying gives: \[ \frac{14+r}{4} = 165 \implies 14+r = 660 \implies r = 646 \] So the value of \( r \) is \( 646 \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad