Pregunta
upstudy study bank question image url

(a) A man stands on the roof of a building 50 m high and throws stone with a speed of \( 60 \mathrm{~m} / \mathrm{s} \) at an angle of \( 37^{\circ} \) above the horizontal. Calculate (I) the maximum height above the roof reached by the rock (ii) the magnitude of the downward velocity of the rock just before it strikes the ground. (iii) the horizontal distance from the base of the building to the point where the stone strikes the ground.

Ask by Sullivan Harrington. in Zambia
Nov 12,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. Maximum height above the roof: \( 66.05 \, \text{m} \) 2. Downward velocity just before striking the ground: \( 59.8 \, \text{m/s} \) 3. Horizontal distance from the base of the building: \( 409.92 \, \text{m} \)

Solución

To solve the problem, we will break it down into three parts as requested. ### Given Data: - Height of the building, \( h = 50 \, \text{m} \) - Initial speed of the stone, \( v_0 = 60 \, \text{m/s} \) - Angle of projection, \( \theta = 37^\circ \) ### Step 1: Resolve the initial velocity into horizontal and vertical components. The horizontal component of the initial velocity \( v_{0x} \) is given by: \[ v_{0x} = v_0 \cos(\theta) = 60 \cos(37^\circ) \] Using \( \cos(37^\circ) \approx 0.8 \): \[ v_{0x} = 60 \times 0.8 = 48 \, \text{m/s} \] The vertical component of the initial velocity \( v_{0y} \) is given by: \[ v_{0y} = v_0 \sin(\theta) = 60 \sin(37^\circ) \] Using \( \sin(37^\circ) \approx 0.6 \): \[ v_{0y} = 60 \times 0.6 = 36 \, \text{m/s} \] ### Part (I): Maximum height above the roof reached by the rock The maximum height \( H \) above the roof can be calculated using the formula: \[ H = \frac{v_{0y}^2}{2g} \] where \( g \approx 9.81 \, \text{m/s}^2 \). Substituting the values: \[ H = \frac{(36)^2}{2 \times 9.81} = \frac{1296}{19.62} \approx 66.05 \, \text{m} \] Thus, the maximum height above the roof is approximately \( 66.05 \, \text{m} \). ### Part (II): Magnitude of the downward velocity just before it strikes the ground To find the downward velocity just before it strikes the ground, we can use the kinematic equation: \[ v_y^2 = v_{0y}^2 + 2g(h + H) \] where \( h + H \) is the total height from which the stone falls. Calculating \( h + H \): \[ h + H = 50 + 66.05 = 116.05 \, \text{m} \] Now substituting the values: \[ v_y^2 = (36)^2 + 2 \times 9.81 \times 116.05 \] Calculating: \[ v_y^2 = 1296 + 2275.81 \approx 3571.81 \] Taking the square root: \[ v_y \approx \sqrt{3571.81} \approx 59.8 \, \text{m/s} \] Thus, the magnitude of the downward velocity just before it strikes the ground is approximately \( 59.8 \, \text{m/s} \). ### Part (III): Horizontal distance from the base of the building to the point where the stone strikes the ground To find the time of flight \( t \), we can use the vertical motion equation: \[ y = v_{0y} t - \frac{1}{2} g t^2 \] Setting \( y = -50 \, \text{m} \) (since it falls 50 m below the roof): \[ -50 = 36t - \frac{1}{2} \times 9.81 t^2 \] Rearranging gives: \[ 4.905t^2 - 36t - 50 = 0 \] Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - \( a = 4.905 \) - \( b = -36 \) - \( c = -50 \) Calculating the discriminant: \[ D = (-36)^2 - 4 \times 4.905 \times (-50) = 1296 + 980.4 = 2276.4 \] Now calculating \( t \): \[ t = \frac{36 \pm \sqrt{2276.4}}{2 \times 4.905} \] Calculating \( \sqrt{2276.4} \approx 47.7 \): \[ t = \frac{36 \pm 47.7}{9.81} \] Taking the positive root: \[ t = \frac{83.7}{9.81} \approx 8.54 \, \text{s} \] Now, the horizontal distance \( d \) is given by: \[ d = v_{0x} t = 48 \times 8.54 \approx 409.92 \, \text{m} \] Thus, the horizontal distance from the base of the building to the point where the stone strikes the ground is approximately \( 409.92 \, \text{m} \). ### Summary of Results: 1. Maximum height above the roof: \( 66.05 \, \text{m} \) 2. Downward velocity just before striking the ground: \( 59.8 \, \text{m/s} \) 3. Horizontal distance from the base of the building: \( 409.92 \, \text{m} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s break down the problem step by step to find the solution. First, we’ll define the relevant motion equations and relevant parameters. The initial velocity (\(u\)) is given as \(60 \mathrm{~m/s}\), and the angle of projection (\(\theta\)) is \(37^\circ\). **(I) Maximum Height Above the Roof:** 1. The vertical component of the initial velocity (\(u_y\)) can be calculated as: \[ u_y = u \sin(\theta) = 60 \sin(37^\circ) \approx 60 \times 0.6018 \approx 36.11 \mathrm{~m/s} \] 2. The maximum height (h) above the roof is reached when the vertical component of the velocity becomes zero. Using the formula: \[ v_y^2 = u_y^2 - 2gh \] Setting \(v_y = 0\): \[ 0 = (36.11)^2 - 2 \times 9.81 \times h \] \[ h \approx \frac{(36.11)^2}{2 \times 9.81} \approx \frac{1303.43}{19.62} \approx 66.47 \ \mathrm{m} \] Thus, the maximum height above the roof is \(66.47 \mathrm{~m}\). So, the total maximum height above the ground is: \[ h_{\text{total}} = 50 \mathrm{~m} + 66.47 \mathrm{~m} = 116.47 \mathrm{~m} \] **(II) Downward Velocity Just Before Striking the Ground:** 1. At the moment before hitting the ground, we can use the conservation of energy or the equation of motion as follows: \[ v_y^2 = u^2 + 2gh_{\text{total}} \] Here, we first calculate \(u_y\) as previously calculated as 36.11 m/s and the total fall height being \(116.47 \mathrm{~m}\): \[ v_y^2 = (36.11)^2 + 2 \times 9.81 \times 116.47 \] \[ v_y^2 = 1303.43 + 2285.50 \approx 3588.93 \] \[ v_y \approx \sqrt{3588.93} \approx 59.9 \ \mathrm{m/s} \] Thus, the magnitude of the downward velocity just before it strikes the ground is approximately \(59.9 \ \mathrm{m/s}\). **(III) Horizontal Distance from the Base of the Building:** 1. We begin with determining the time of flight (T) until the stone hits the ground. The total vertical distance it travels is the height from which it was launched plus the height it rises, which is \(50 \mathrm{~m} + 66.47 \mathrm{~m}\): The total time of flight can be deduced from: \[ T = \frac{2u_y}{g} + T_f \] Where \(T_f\) is the time of fall from the max height down to ground: \[ T_f = \sqrt{\frac{2h_{\text{total}}}{g}} \approx \sqrt{\frac{2(116.47)}{9.81}} \approx \sqrt{23.73} \approx 4.87 \ \mathrm{s} \] And \(T_b\) \[ T_b \approx \frac{36.11}{9.81} \approx 3.68 \ \mathrm{s} \] So total \(T = 4.87 + 3.68 \approx 8.55\). 2. The horizontal component of the initial velocity (\(u_x\)) is: \[ u_x = u \cos(\theta) = 60 \cos(37^\circ) \approx 60 \times 0.7986 \approx 47.91 \mathrm{~m/s} \] 3. Finally, the horizontal distance (D) from the base of the building to where the stone strikes the ground is: \[ D = u_x \times T \approx 47.91 \times 8.55 \approx 409.33 \ \mathrm{m} \] In conclusion: - The maximum height above the roof is \(66.47 \mathrm{~m}\). - The magnitude of the downward velocity just

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad