In Problems 21-26, find each indefinite integral using the given substitution. 21. \( \int e^{3 x+1} d x ; \) let \( u=3 x+1 \) 22. \( \int \frac{d x}{x \ln x} ; \) let \( u=\ln x \) 23. \( \int\left(1-t^{2}\right)^{6} t d t \); let \( u=\left(1-t^{2}\right) \) 438 81. 24. \( \int \sin ^{5} x \cos x d x \); let \( u=\sin x \) 25. \( \int \frac{x^{2} d x}{\sqrt{1-x^{6}}} ; \) let \( u=x^{3} \) 26. \( \int \frac{e^{-x}}{6+e^{-x}} d x \); let \( u=6+e^{-x} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
Here's a neat little tidbit: Substitutions in integrals are not just about changing variables. It's also like finding a secret passage in a labyrinth. With the right substitution, you can simplify complex integrals and make them much more manageable. For example, in problem 21 with \( u = 3x + 1 \), you effectively turn an exponential problem into a simple one that can be solved with basic integration rules! Let’s dive into real-world applications too! Understanding integrals helps not only in theoretical maths but also in practical situations. For instance, economists use them to find consumer surplus or producer surplus, while physicists tap into them for calculating areas under curves, which can relate to the work done by forces. So, mastering these skills isn't just academic; it's a powerful tool for solving real-life problems!
