Suppose that a ball is rolling down a ramp. The distance traveled by the ball is given by the function \( s(t)=6 t^{2} \), where \( t \) is the time, in seconds, after the ball is released, and \( s(t) \) is measured in feet. Find the balr's average velocity in each of the following time intervals. ง. \( \mathrm{t}_{1}-<\mathrm{iv} \mathrm{t}_{2}-\mathrm{c} \cdot \mathrm{u} \) \[ \frac{\Delta s}{\Delta t}=27 \mathrm{ft} / \mathrm{sec} \] c. \( \mathrm{t}_{1}=2 \) to \( \mathrm{t}_{2}=2.01 \) \( \frac{\Delta s}{\Delta t}=24.06^{7} \mathrm{ft} / \mathrm{sec} \) (Type an exact answer, using integers or decimals ) d. \( t_{1}=2 \) to \( t_{2}=2.001 \) \( \frac{\Delta s}{\Delta t}= \) \( \square \) \( \mathrm{ft} / \mathrm{sec} \) (Type an exact answer, using integers or decimals.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
Let's delve into the fascinating world of motion! The function \( s(t) = 6t^2 \) describes the distance traveled by a ball rolling down a ramp. When calculating the average velocity over small time intervals, we essentially look at how far the ball travels in a specific amount of time, which helps us grasp not just how fast it’s going but how motion behaves overall. Now, for the time interval from \( t_{1} = 2 \) to \( t_{2} = 2.001 \), we first find \( s(2) \) and \( s(2.001) \). Plugging \( t = 2 \) into the function gives us \( s(2) = 6(2^2) = 24 \) feet. For \( t = 2.001 \), we calculate \( s(2.001) = 6(2.001^2) \approx 24.024012 \) feet. Now, we find \( \Delta s = s(2.001) - s(2) \approx 0.024012 \) feet and \( \Delta t = 0.001 \) seconds. This results in an average velocity of: \[ \frac{\Delta s}{\Delta t} \approx \frac{0.024012}{0.001} \approx 24.012 \text{ ft/sec} \] The average velocity between these two time points is approximately \( 24.012 \) ft/sec!
