Find all complex solutions of \( 2 x^{2}-x+8=0 \). (If there is more than one solution, separate them with commas.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the complex solutions of the quadratic equation \( 2x^{2}-x+8=0 \), we can use the quadratic formula given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2 \), \( b = -1 \), and \( c = 8 \). First, we need to calculate the discriminant \( b^2 - 4ac \): \[ b^2 - 4ac = (-1)^2 - 4(2)(8) = 1 - 64 = -63 \] Since the discriminant is negative, this indicates that the solutions will be complex. Now substituting into the quadratic formula: \[ x = \frac{-(-1) \pm \sqrt{-63}}{2(2)} = \frac{1 \pm \sqrt{-63}}{4} \] We can simplify \(\sqrt{-63}\): \[ \sqrt{-63} = \sqrt{63}i = \sqrt{9 \cdot 7}i = 3\sqrt{7}i \] Now substituting this back into the equation gives us: \[ x = \frac{1 \pm 3\sqrt{7}i}{4} \] Thus, the solutions are: \[ x = \frac{1 + 3\sqrt{7}i}{4}, \quad x = \frac{1 - 3\sqrt{7}i}{4} \] So, the final answers are: \[ \frac{1 + 3\sqrt{7}i}{4}, \frac{1 - 3\sqrt{7}i}{4} \]
