Pregunta
upstudy study bank question image url

uestion 1 (1 point) You invest \( \$ 10000.00 \) in a savings account that pays interest of \( 8 \% \) compounded monthly. What is the value of your account after 14 montl

Ask by Gonzalez Rodriquez. in Canada
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 14 months, your account will be worth approximately \$10,974.88.

Solución

To find the value of the account after 14 months with monthly compounding interest, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. ### Given: - \( P = 10000 \) - \( r = 0.08 \) (8% as a decimal) - \( n = 12 \) (monthly compounding) - \( t = \frac{14}{12} \) years (since we need to convert months to years) Now, let's calculate \( A \) step by step. 1. Calculate \( \frac{r}{n} \): \[ \frac{r}{n} = \frac{0.08}{12} \] 2. Calculate \( nt \): \[ nt = 12 \times \frac{14}{12} = 14 \] 3. Substitute these values into the compound interest formula: \[ A = 10000 \left(1 + \frac{0.08}{12}\right)^{14} \] Now, let's perform the calculations. Calculate the value by following steps: - step0: Calculate: \(\frac{0.08}{12}\) - step1: Convert the expressions: \(\frac{\frac{2}{25}}{12}\) - step2: Multiply by the reciprocal: \(\frac{2}{25}\times \frac{1}{12}\) - step3: Reduce the numbers: \(\frac{1}{25}\times \frac{1}{6}\) - step4: Multiply the fractions: \(\frac{1}{25\times 6}\) - step5: Multiply: \(\frac{1}{150}\) Calculate or simplify the expression \( 12 * (14 / 12) \). Calculate the value by following steps: - step0: Calculate: \(12\left(\frac{14}{12}\right)\) - step1: Reduce the fraction: \(12\times \frac{7}{6}\) - step2: Reduce the numbers: \(2\times 7\) - step3: Multiply the numbers: \(14\) Calculate or simplify the expression \( 10000 * (1 + (0.08 / 12))^14 \). Calculate the value by following steps: - step0: Calculate: \(10000\left(1+\left(\frac{0.08}{12}\right)\right)^{14}\) - step1: Divide the terms: \(10000\left(1+\frac{1}{150}\right)^{14}\) - step2: Add the numbers: \(10000\left(\frac{151}{150}\right)^{14}\) - step3: Simplify: \(10000\times \frac{151^{14}}{150^{14}}\) - step4: Rewrite the expression: \(2500\times 4\times \frac{151^{14}}{150^{14}}\) - step5: Rewrite the expression: \(2500\times 4\times \frac{151^{14}}{50^{14}\times 3^{14}}\) - step6: Rewrite the expression: \(50^{2}\times 4\times \frac{151^{14}}{50^{14}\times 3^{14}}\) - step7: Reduce the numbers: \(4\times \frac{151^{14}}{50^{12}\times 3^{14}}\) - step8: Rewrite the expression: \(4\times \frac{151^{14}}{2^{12}\times 25^{12}\times 3^{14}}\) - step9: Rewrite the expression: \(2^{2}\times \frac{151^{14}}{2^{12}\times 25^{12}\times 3^{14}}\) - step10: Reduce the numbers: \(1\times \frac{151^{14}}{2^{10}\times 25^{12}\times 3^{14}}\) - step11: Multiply the fractions: \(\frac{151^{14}}{1024\times 25^{12}\times 3^{14}}\) Let's summarize the calculations step by step: 1. **Calculate \( \frac{r}{n} \)**: \[ \frac{0.08}{12} \approx 0.00666667 \] 2. **Calculate \( nt \)**: \[ nt = 14 \] 3. **Substituting into the compound interest formula**: \[ A = 10000 \left(1 + 0.00666667\right)^{14} \] Now, calculating \( A \): \[ A \approx 10000 \left(1.00666667\right)^{14} \] Using the calculated values: \[ A \approx 10000 \times 1.0996 \approx 10974.88 \] ### Final Result: The value of your account after 14 months is approximately \( \$ 10,974.88 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the future value of an investment compounded monthly, you can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (\$10,000). - \( r \) is the annual interest rate (decimal) (8%, or 0.08). - \( n \) is the number of times that interest is compounded per year (12 for monthly). - \( t \) is the time the money is invested for, in years (14 months = 14/12 years). Substituting the values, we get: \[ A = 10000 \left(1 + \frac{0.08}{12}\right)^{12 \cdot \frac{14}{12}} \] Now, calculate the components: - \( r/n = 0.08/12 = 0.0066667 \) - \( nt = 12 \cdot \frac{14}{12} = 14 \) Thus: \[ A = 10000 (1 + 0.0066667)^{14} \] \[ A = 10000 (1.0066667)^{14} \] Calculating \( (1.0066667)^{14} \): \[ A \approx 10000 \cdot 1.10094 \] \[ A \approx 11009.40 \] So, the value of your account after 14 months will be approximately **\$11,009.40**. Now, here are some fun facts: Did you know that compound interest is often referred to as “the eighth wonder of the world”? It’s true! Albert Einstein supposedly called it this because of the way it magnifies your income over time – the longer you let it work for you, the more it grows, like a snowball rolling down a hill! Also, practical budgeting doesn’t just mean keeping a close eye on expenses. Many savvy savers also create a “Compounding Challenge.” They set aside an extra amount each month, and as their savings grow, they can see how much they could amass in a year or decades – making saving feel like an exciting game!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad