(i) Determine the set of values of \( k \) for which the equation \( x^{2}+2 x+k=3 k x-1 \) has no real roots.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To determine the set of values of \( k \) for which the equation \( x^{2}+2 x+k=3 k x-1 \) has no real roots, we first rearrange the equation to standard form: \[ x^2 + 2x + k - 3kx + 1 = 0 \] \[ x^2 + (2 - 3k)x + (k + 1) = 0 \] Next, we express this as a quadratic equation \( ax^2 + bx + c = 0 \) where: - \( a = 1 \) - \( b = 2 - 3k \) - \( c = k + 1 \) For a quadratic equation to have no real roots, the discriminant must be less than zero: \[ D = b^2 - 4ac < 0 \] Substituting \( a \), \( b \), and \( c \), we get: \[ D = (2 - 3k)^2 - 4(1)(k + 1) < 0 \] Expanding this: \[ (2 - 3k)^2 - 4(k + 1) < 0 \] \[ 4 - 12k + 9k^2 - 4k - 4 < 0 \] \[ 9k^2 - 16k < 0 \] Factoring gives us: \[ k(9k - 16) < 0 \] To solve the inequality \( k(9k - 16) < 0 \), we find the roots: 1. \( k = 0 \) 2. \( 9k - 16 = 0 \) leads to \( k = \frac{16}{9} \) Now we test intervals determined by the roots: - For \( k < 0 \): positive - For \( 0 < k < \frac{16}{9} \): negative (we want this) - For \( k > \frac{16}{9} \): positive Thus, the solution set where the equation has no real roots is: \[ 0 < k < \frac{16}{9} \]


Puedes disfrutar
Empieza ahora- Explicaciones paso a paso
- Tutores expertos en vivo 24/7
- Número ilimitado de preguntas
- Sin interrupciones
- Acceso completo a Respuesta y Solución
- Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Totalmente gratis pero limitado
- Solución limitada


