Subtract the polynomials. \[ \left(\frac{7}{8} x^{7}-\frac{9}{7} x-\frac{2}{5}\right)-\left(\frac{3}{8} x^{7}-\frac{4}{7} x+\frac{6}{5}\right)=\square \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To subtract the polynomials, we need to distribute the negative sign through the second polynomial and then combine like terms. Start by rewriting the expression: \[ \left(\frac{7}{8} x^{7} - \frac{9}{7} x - \frac{2}{5}\right) - \left(\frac{3}{8} x^{7} - \frac{4}{7} x + \frac{6}{5}\right) \] Distributing the negative sign gives: \[ \frac{7}{8} x^{7} - \frac{9}{7} x - \frac{2}{5} - \frac{3}{8} x^{7} + \frac{4}{7} x - \frac{6}{5} \] Now, combine the like terms. For the \(x^{7}\) terms: \[ \frac{7}{8} x^{7} - \frac{3}{8} x^{7} = \left(\frac{7}{8} - \frac{3}{8}\right)x^{7} = \frac{4}{8} x^{7} = \frac{1}{2} x^{7} \] Next, combine the \(x\) terms: \[ -\frac{9}{7} x + \frac{4}{7} x = \left(-\frac{9}{7} + \frac{4}{7}\right)x = -\frac{5}{7} x \] Finally, combine the constant terms: \[ -\frac{2}{5} - \frac{6}{5} = -\frac{8}{5} \] Putting it all together, we get: \[ \frac{1}{2} x^{7} - \frac{5}{7} x - \frac{8}{5} \] So the final answer is: \[ \frac{1}{2} x^{7} - \frac{5}{7} x - \frac{8}{5} \]