Pregunta
upstudy study bank question image url

(c) Find the Huffman encoding for the following alphabet and set of frequencies. \[ \{(a, 0.12),(b, 0.38),(c, 0.1),(e, 0.25),(f, 0.06),(d, 0.05),(g, 0.01),(h, 0.03)\} \]

Ask by Goodwin Lowe. in Kenya
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the Huffman codes for each symbol: - **b**: 0 - **e**: 10 - **f**: 1100 - **d**: 11011 - **g**: 110100 - **h**: 110101 - **c**: 1110 - **a**: 1111

Solución

To construct the Huffman encoding for the given alphabet and set of frequencies: \[ \{(a, 0.12),(b, 0.38),(c, 0.1),(e, 0.25),(f, 0.06),(d, 0.05),(g, 0.01),(h, 0.03)\} \] we'll follow the Huffman coding algorithm step by step. ### Step 1: List Symbols by Frequency First, sort the symbols in ascending order based on their frequencies: 1. **g**: 0.01 2. **h**: 0.03 3. **d**: 0.05 4. **f**: 0.06 5. **c**: 0.10 6. **a**: 0.12 7. **e**: 0.25 8. **b**: 0.38 ### Step 2: Build the Huffman Tree **Iteration 1:** - **Combine the two smallest frequencies:** **g (0.01)** and **h (0.03)** → **gh (0.04)** **Updated List:** - gh: 0.04 - d: 0.05 - f: 0.06 - c: 0.10 - a: 0.12 - e: 0.25 - b: 0.38 --- **Iteration 2:** - **Combine the next two smallest:** **gh (0.04)** and **d (0.05)** → **ghd (0.09)** **Updated List:** - ghd: 0.09 - f: 0.06 - c: 0.10 - a: 0.12 - e: 0.25 - b: 0.38 --- **Iteration 3:** - **Combine the next two smallest:** **f (0.06)** and **ghd (0.09)** → **fghd (0.15)** **Updated List:** - fghd: 0.15 - c: 0.10 - a: 0.12 - e: 0.25 - b: 0.38 --- **Iteration 4:** - **Combine the next two smallest:** **c (0.10)** and **a (0.12)** → **ca (0.22)** **Updated List:** - fghd: 0.15 - ca: 0.22 - e: 0.25 - b: 0.38 --- **Iteration 5:** - **Combine the next two smallest:** **fghd (0.15)** and **ca (0.22)** → **fghdca (0.37)** **Updated List:** - fghdca: 0.37 - e: 0.25 - b: 0.38 --- **Iteration 6:** - **Combine the next two smallest:** **e (0.25)** and **fghdca (0.37)** → **efghdca (0.62)** **Updated List:** - efghdca: 0.62 - b: 0.38 --- **Iteration 7:** - **Combine the remaining nodes:** **b (0.38)** and **efghdca (0.62)** → **Root (1.00)** ### Step 3: Assign Codes Starting from the root, assign binary codes by traversing the tree. Typically, assign **0** to the left branch and **1** to the right branch at each internal node. Here's the detailed assignment: 1. **Root (1.00):** - **Left Child (b):** `0` - **Right Child (efghdca):** `1` 2. **efghdca (0.62):** - **Left Child (e):** `10` - **Right Child (fghdca):** `11` 3. **fghdca (0.37):** - **Left Child (fghd):** `110` - **Right Child (ca):** `111` 4. **fghd (0.15):** - **Left Child (f):** `1100` - **Right Child (ghd):** `1101` 5. **ghd (0.09):** - **Left Child (gh):** `11010` - **Right Child (d):** `11011` 6. **gh (0.04):** - **Left Child (g):** `110100` - **Right Child (h):** `110101` 7. **ca (0.22):** - **Left Child (c):** `1110` - **Right Child (a):** `1111` ### Final Huffman Codes | Symbol | Frequency | Huffman Code | |--------|-----------|--------------| | **b** | 0.38 | `0` | | **e** | 0.25 | `10` | | **f** | 0.06 | `1100` | | **d** | 0.05 | `11011` | | **g** | 0.01 | `110100` | | **h** | 0.03 | `110101` | | **c** | 0.10 | `1110` | | **a** | 0.12 | `1111` | ### Verification To ensure the correctness of the Huffman codes: 1. **Prefix Property:** No code is a prefix of another code. 2. **Efficiency:** The most frequent symbols have the shortest codes. Indeed: - **b (0.38)** has the shortest code: `0` - **e (0.25)** has `10` - Less frequent symbols like **g (0.01)** have longer codes: `110100` This satisfies both the prefix property and ensures an efficient encoding based on the given frequencies.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To create the Huffman encoding for the given set of frequencies, we can follow these steps: 1. **List the symbols and their frequencies**: \[ \{(a, 0.12), (b, 0.38), (c, 0.1), (e, 0.25), (f, 0.06), (d, 0.05), (g, 0.01), (h, 0.03)\} \] 2. **Create a priority queue (min-heap)** with these frequencies. 3. **Combine the two least frequent symbols**: - Combine `g (0.01)` and `f (0.06)` to create a new node `gf (0.07)`. 4. **Repeat the process**: Now, the frequencies are: \[ \{(h, 0.03), (d, 0.05), (gf, 0.07), (c, 0.1), (a, 0.12), (e, 0.25), (b, 0.38)\} \] - Combine `h (0.03)` and `d (0.05)` to create `hd (0.08)`. Continuing in this manner, we create: - Combine `hd (0.08)` and `gf (0.07)` to create `hdgf (0.15)`. - Combine `c (0.1)` and `a (0.12)` to create `ca (0.22)`. - Combine `hdgf (0.15)` and `ca (0.22)` to create `hdgfca (0.37)`. - Finally, combine `hdgfca (0.37)` and `e (0.25)` to create `ehdgfca (0.62)`. - Combine `ehdgfca (0.62)` and `b (0.38)` to finish with `ehdgfca_b (1.0)`. 5. **Create binary codes**: Assign binary codes based on the path taken to reach each character, with left branches as `0` and right branches as `1`. The resulting Huffman encoding will be: - `a: 110` - `b: 1` - `c: 111` - `d: 000` - `e: 10` - `f: 0010` - `g: 00110` - `h: 00111` This way, each symbol gets a binary representation that is unique and minimizes the total length of encoding based on their frequencies!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad