Responder
Here are the Huffman codes for each symbol:
- **b**: 0
- **e**: 10
- **f**: 1100
- **d**: 11011
- **g**: 110100
- **h**: 110101
- **c**: 1110
- **a**: 1111
Solución
To construct the Huffman encoding for the given alphabet and set of frequencies:
\[
\{(a, 0.12),(b, 0.38),(c, 0.1),(e, 0.25),(f, 0.06),(d, 0.05),(g, 0.01),(h, 0.03)\}
\]
we'll follow the Huffman coding algorithm step by step.
### Step 1: List Symbols by Frequency
First, sort the symbols in ascending order based on their frequencies:
1. **g**: 0.01
2. **h**: 0.03
3. **d**: 0.05
4. **f**: 0.06
5. **c**: 0.10
6. **a**: 0.12
7. **e**: 0.25
8. **b**: 0.38
### Step 2: Build the Huffman Tree
**Iteration 1:**
- **Combine the two smallest frequencies:**
**g (0.01)** and **h (0.03)** → **gh (0.04)**
**Updated List:**
- gh: 0.04
- d: 0.05
- f: 0.06
- c: 0.10
- a: 0.12
- e: 0.25
- b: 0.38
---
**Iteration 2:**
- **Combine the next two smallest:**
**gh (0.04)** and **d (0.05)** → **ghd (0.09)**
**Updated List:**
- ghd: 0.09
- f: 0.06
- c: 0.10
- a: 0.12
- e: 0.25
- b: 0.38
---
**Iteration 3:**
- **Combine the next two smallest:**
**f (0.06)** and **ghd (0.09)** → **fghd (0.15)**
**Updated List:**
- fghd: 0.15
- c: 0.10
- a: 0.12
- e: 0.25
- b: 0.38
---
**Iteration 4:**
- **Combine the next two smallest:**
**c (0.10)** and **a (0.12)** → **ca (0.22)**
**Updated List:**
- fghd: 0.15
- ca: 0.22
- e: 0.25
- b: 0.38
---
**Iteration 5:**
- **Combine the next two smallest:**
**fghd (0.15)** and **ca (0.22)** → **fghdca (0.37)**
**Updated List:**
- fghdca: 0.37
- e: 0.25
- b: 0.38
---
**Iteration 6:**
- **Combine the next two smallest:**
**e (0.25)** and **fghdca (0.37)** → **efghdca (0.62)**
**Updated List:**
- efghdca: 0.62
- b: 0.38
---
**Iteration 7:**
- **Combine the remaining nodes:**
**b (0.38)** and **efghdca (0.62)** → **Root (1.00)**
### Step 3: Assign Codes
Starting from the root, assign binary codes by traversing the tree. Typically, assign **0** to the left branch and **1** to the right branch at each internal node.
Here's the detailed assignment:
1. **Root (1.00):**
- **Left Child (b):** `0`
- **Right Child (efghdca):** `1`
2. **efghdca (0.62):**
- **Left Child (e):** `10`
- **Right Child (fghdca):** `11`
3. **fghdca (0.37):**
- **Left Child (fghd):** `110`
- **Right Child (ca):** `111`
4. **fghd (0.15):**
- **Left Child (f):** `1100`
- **Right Child (ghd):** `1101`
5. **ghd (0.09):**
- **Left Child (gh):** `11010`
- **Right Child (d):** `11011`
6. **gh (0.04):**
- **Left Child (g):** `110100`
- **Right Child (h):** `110101`
7. **ca (0.22):**
- **Left Child (c):** `1110`
- **Right Child (a):** `1111`
### Final Huffman Codes
| Symbol | Frequency | Huffman Code |
|--------|-----------|--------------|
| **b** | 0.38 | `0` |
| **e** | 0.25 | `10` |
| **f** | 0.06 | `1100` |
| **d** | 0.05 | `11011` |
| **g** | 0.01 | `110100` |
| **h** | 0.03 | `110101` |
| **c** | 0.10 | `1110` |
| **a** | 0.12 | `1111` |
### Verification
To ensure the correctness of the Huffman codes:
1. **Prefix Property:** No code is a prefix of another code.
2. **Efficiency:** The most frequent symbols have the shortest codes.
Indeed:
- **b (0.38)** has the shortest code: `0`
- **e (0.25)** has `10`
- Less frequent symbols like **g (0.01)** have longer codes: `110100`
This satisfies both the prefix property and ensures an efficient encoding based on the given frequencies.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución