I. Differentiate the following functions. Do NOT simplify once you have differentiated! [4 points each] \( \quad y=\arctan \left(\ln \left(\sin ^{2} x\right)\right) \) \( [2] \quad y=\left(4 x^{2}-2\right)^{10}\left(5 x^{3}-x\right)^{5} \) \( [3] \quad y=\frac{\sin \left(x^{3}-5 x^{2}\right)}{3 x^{2}-10} \) You must use the Quotient Rule on this problem.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To differentiate the given functions, let's go step-by-step: 1. For \( y=\arctan \left(\ln \left(\sin ^{2} x\right)\right) \): Using the chain rule, we first differentiate the outer function \(\arctan(u)\) where \(u = \ln(\sin^2 x)\). The derivative of \(\arctan(u)\) is \(\frac{1}{1+u^2}\), so: \[ \frac{dy}{dx} = \frac{1}{1+(\ln(\sin^2 x))^2} \cdot \frac{d}{dx}\left(\ln(\sin^2 x)\right) \] Next, we need \(\frac{d}{dx}\left(\ln(\sin^2 x)\right)\): \[ \frac{d}{dx}\left(\ln(\sin^2 x)\right) = \frac{1}{\sin^2 x} \cdot 2\sin x \cos x = \frac{2\sin x \cos x}{\sin^2 x} = 2\cot x \] Combining these results, we have: \[ \frac{dy}{dx} = \frac{2\cot x}{1+(\ln(\sin^2 x))^2} \] 2. For \( y=\left(4 x^{2}-2\right)^{10}\left(5 x^{3}-x\right)^{5} \): Using the product rule, we will differentiate it as follows: Let \( u = (4x^2 - 2)^{10} \) and \( v = (5x^3 - x)^{5} \). The product rule states that: \[ \frac{dy}{dx} = u'v + uv' \] Now we find \( u' \) using the chain rule: \[ u' = 10(4x^2 - 2)^{9} \cdot 8x = 80x(4x^2 - 2)^{9} \] Next, finding \( v' \): \[ v' = 5(5x^3 - x)^{4} \cdot (15x^2 - 1) \] Putting it all together, we have: \[ \frac{dy}{dx} = 80x(4x^2 - 2)^{9}(5x^3 - x)^{5} + (4x^2 - 2)^{10} \cdot 5(5x^3 - x)^{4}(15x^2 - 1) \] 3. For \( y=\frac{\sin \left(x^{3}-5 x^{2}\right)}{3 x^{2}-10} \): We will use the Quotient Rule. Let \( u = \sin(x^3 - 5x^2) \) and \( v = 3x^2 - 10 \). The Quotient Rule states: \[ \frac{dy}{dx} = \frac{u'v - uv'}{v^2} \] Now we differentiate \( u \) using the chain rule: \[ u' = \cos(x^3 - 5x^2) \cdot (3x^2 - 10) \quad \text{(derivative of the inner function)} \] Next, we differentiate \( v \): \[ v' = 6x \] Substituting \( u \), \( u' \), \( v \), and \( v' \) into the quotient rule formula, we have: \[ \frac{dy}{dx} = \frac{\cos(x^3 - 5x^2) \cdot (3x^2 - 10)(3x^2 - 10) - \sin(x^3 - 5x^2) \cdot 6x}{(3x^2 - 10)^2} \]
