Pregunta
upstudy study bank question image url

13. Write the complex number \( z \) in \( x+\mathrm{i} y \) form, where \( x, y \in \mathbb{Z} \) if \( z \) satisfies the equation \( \sqrt{z}=\frac{2}{1-\mathrm{i}}+1-4 \mathrm{i} \) 15. Find the real numbers \( p \) and \( q \) that satisfy the equation \( 2(p+\mathrm{i} q)=q-\mathrm{i} p-2(1-\mathrm{i}) \)

Ask by Mckenzie Frank. in Mongolia
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

13. \( z = -5 - 12i \) 15. \( p = -\frac{2}{5} \) and \( q = \frac{6}{5} \)

Solución

We will solve each problem step by step. ──────────────────────── Problem 13 We are given that   √z = (2/(1 – i)) + (1 – 4i). Step 1. Simplify 2/(1 – i): Multiply numerator and denominator by the complex conjugate of (1 – i):   2/(1 – i) = [2(1 + i)]/[(1 – i)(1 + i)] = [2(1 + i)]/(1 + 1) = 1 + i. Step 2. Substitute back into the equation:   √z = (1 + i) + (1 – 4i) = 2 – 3i. Step 3. Square both sides to find z:   z = (2 – 3i)². Expand (2 – 3i)²:   (2 – 3i)² = 2² – 2×2×3i + (–3i)² = 4 – 12i + 9(i²). Since i² = –1, we have:   (2 – 3i)² = 4 – 12i – 9 = –5 – 12i. Thus, in x + i y form with x, y ∈ ℤ, we have:   z = –5 – 12i. ──────────────────────── Problem 15 We are given that   2(p + i q) = q – i p – 2(1 – i). Step 1. Expand both sides:   Left-hand side: 2(p + i q) = 2p + 2i q.   Right-hand side: q – i p – 2(1 – i) = q – i p – 2 + 2i. Step 2. Equate the real and imaginary parts. Real parts:   2p = q – 2      (1) Imaginary parts:   2q = –p + 2      (2) Step 3. Solve equation (1) for q:   q = 2p + 2. Step 4. Substitute q into equation (2):   2(2p + 2) = –p + 2 ⟹ 4p + 4 = –p + 2. Collect like terms:   4p + p = 2 – 4 ⟹ 5p = –2 ⟹ p = –2/5. Step 5. Substitute p back to find q:   q = 2(–2/5) + 2 = –4/5 + 2 = (–4/5 + 10/5) = 6/5. Thus, the real numbers p and q are:   p = –2/5  and  q = 6/5. ──────────────────────── Final Answers: 13. z = –5 – 12i 15. p = –2/5 and q = 6/5

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the first problem, we start by simplifying the right-hand side of the equation \( \sqrt{z}=\frac{2}{1-\mathrm{i}}+1-4 \mathrm{i} \). 1. First, we multiply the numerator and the denominator of \( \frac{2}{1-\mathrm{i}} \) by the conjugate of the denominator: \[ \frac{2(1+\mathrm{i})}{(1-\mathrm{i})(1+\mathrm{i})} = \frac{2(1+\mathrm{i})}{1^2 + 1^2} = \frac{2(1+\mathrm{i})}{2} = 1 + \mathrm{i} \] 2. Next, we substitute this back: \[ \sqrt{z} = (1 + \mathrm{i}) + (1 - 4\mathrm{i}) = 2 - 3\mathrm{i} \] 3. To find \( z \), we square both sides: \[ z = (2 - 3\mathrm{i})^2 = 4 - 12\mathrm{i} - 9(-1) = 4 - 12\mathrm{i} + 9 = 13 - 12\mathrm{i} \] Thus, the complex number \( z \) in \( x+\mathrm{i}y \) form is \( 13 - 12\mathrm{i} \). --- For the second problem, let's solve \( 2(p+\mathrm{i} q)=q-\mathrm{i} p-2(1-\mathrm{i}) \). 1. First, simplify the right-hand side: \[ = q - \mathrm{i} p - 2 + 2\mathrm{i} = q - 2 + (2 - p)\mathrm{i} \] 2. Now equate the real and imaginary parts on both sides: Real part: \[ 2p = q - 2 \] Imaginary part: \[ 2q = 2 - p \] 3. We can express \( q \) from the first equation: \[ q = 2p + 2 \] 4. Substitute \( q \) into the second equation: \[ 2(2p + 2) = 2 - p \rightarrow 4p + 4 = 2 - p \rightarrow 5p = -2 \rightarrow p = -\frac{2}{5} \] 5. Substitute \( p \) back to find \( q \): \[ q = 2(-\frac{2}{5}) + 2 = -\frac{4}{5} + 2 = -\frac{4}{5} + \frac{10}{5} = \frac{6}{5} \] Thus, the real numbers are \( p = -\frac{2}{5} \) and \( q = \frac{6}{5} \).

preguntas relacionadas

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad