Pregunta
upstudy study bank question image url

A) A cylinder has a height of 11 centimeters and a diameter of 38 centimeters. What is its volume? Use \( \pi \approx 3.14 \) and round your answer to the nearest hundredth. Submit centimeters Subic

Ask by Hanson Cook. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the cylinder is approximately 12468.94 cubic centimeters.

Solución

To find the volume of a cylinder, we can use the formula: \[ V = \pi r^2 h \] where: - \( V \) is the volume of the cylinder, - \( r \) is the radius of the cylinder, - \( h \) is the height of the cylinder. Given: - Height of the cylinder, \( h = 11 \) centimeters, - Diameter of the cylinder, \( d = 38 \) centimeters. First, we need to find the radius of the cylinder. The radius is half of the diameter: \[ r = \frac{d}{2} = \frac{38}{2} = 19 \text{ centimeters} \] Now, we can substitute the values into the formula to find the volume: \[ V = \pi r^2 h = 3.14 \times 19^2 \times 11 \] Let's calculate the volume. Calculate the value by following steps: - step0: Calculate: \(3.14\times 19^{2}\times 11\) - step1: Multiply the terms: \(34.54\times 19^{2}\) - step2: Rewrite the expression: \(34.54\times 361\) - step3: Multiply the numbers: \(12468.94\) The volume of the cylinder is approximately 12468.94 cubic centimeters. Rounding to the nearest hundredth, the volume is 12468.94 cubic centimeters.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the volume of the cylinder, you can use the formula \( V = \pi r^2 h \). First, calculate the radius, which is half the diameter, so \( r = \frac{38}{2} = 19 \) centimeters. Then plug the values into the formula: \[ V = 3.14 \times (19)^2 \times 11 \approx 3.14 \times 361 \times 11 \approx 3.14 \times 3971 \approx 12470.94 \text{ cubic centimeters}.\] So, the volume of the cylinder is approximately 12470.94 cubic centimeters! If you're looking to visualize this, think about how much space a big soda can takes up. If you were to fill your cylinder with soda, you could fit about 12,470 milliliters inside—perfect for a party! Just imagine the fizzy fun that could ensue with that much soda! 🍾🎉

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad