Pregunta
upstudy study bank question image url

c) Hence, or otherwise, evaluate : \( \begin{aligned}\left(\frac{1}{4}+\frac{3}{4}\right) & +\left(\frac{1}{6}+\frac{3}{6}+\frac{5}{6}\right)+\left(\frac{1}{8}+\frac{3}{8}+\frac{5}{8}+\frac{7}{8}\right)+\cdots+\left(\frac{1}{50}+\frac{3}{50}+\frac{5}{50}+\cdots\right. \\ & \left.+\frac{49}{50}\right)\end{aligned} \)

Ask by Kelley Ray. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum evaluates to **162**.

Solución

To evaluate the sum: \[ \left(\frac{1}{4}+\frac{3}{4}\right) + \left(\frac{1}{6}+\frac{3}{6}+\frac{5}{6}\right) + \left(\frac{1}{8}+\frac{3}{8}+\frac{5}{8}+\frac{7}{8}\right) + \cdots + \left(\frac{1}{50}+\frac{3}{50}+\frac{5}{50}+\cdots+\frac{49}{50}\right) \] we can observe the following pattern: 1. **General Structure:** - For each even denominator \( k = 4, 6, 8, \ldots, 50 \), the numerators are the odd numbers less than \( k \). - Specifically, for \( k = 2n \), the numerators are \( 1, 3, 5, \ldots, (2n - 1) \). 2. **Expressing the Sum:** - The sum can be rewritten as: \[ \sum_{n=2}^{25} \left( \sum_{m=1}^{n} \frac{2m-1}{2n} \right) \] - Here, \( n \) ranges from 2 to 25, corresponding to denominators \( k = 4 \) to \( k = 50 \). 3. **Simplifying the Inner Sum:** - The inner sum \( \sum_{m=1}^{n} (2m - 1) \) simplifies to \( n^2 \) because: \[ \sum_{m=1}^{n} (2m - 1) = 2 \sum_{m=1}^{n} m - \sum_{m=1}^{n} 1 = 2 \left( \frac{n(n+1)}{2} \right) - n = n^2 \] - Therefore, each term becomes: \[ \frac{n^2}{2n} = \frac{n}{2} \] 4. **Calculating the Total Sum:** - The total sum is: \[ \sum_{n=2}^{25} \frac{n}{2} = \frac{1}{2} \sum_{n=2}^{25} n \] - The sum \( \sum_{n=2}^{25} n \) is: \[ \sum_{n=1}^{25} n - 1 = \frac{25 \times 26}{2} - 1 = 325 - 1 = 324 \] - Therefore, the total sum is: \[ \frac{324}{2} = 162 \] **Final Answer:** The evaluated sum is **162**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To evaluate the given expression, we can first observe the pattern in each grouping of fractions. Starting with the first group: \[ \frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1. \] For the second group: \[ \frac{1}{6} + \frac{3}{6} + \frac{5}{6} = \frac{1+3+5}{6} = \frac{9}{6} = 1.5. \] For the third group: \[ \frac{1}{8} + \frac{3}{8} + \frac{5}{8} + \frac{7}{8} = \frac{1+3+5+7}{8} = \frac{16}{8} = 2. \] More generally, we note that the nth term groups sum the first n odd numbers divided by \( n \): \[ S_n = \sum_{k=1}^{n} (2k-1) = n^2. \] Thus, we can conclude that: \[ \frac{1 + 3 + 5 + \cdots + (2n-1)}{2n} = \frac{n^2}{2n} = \frac{n}{2}. \] Now, our expression consists of groups from \( n = 2 \) to \( n = 25 \): \[ 1 + 1.5 + 2 + 2.5 + \cdots + 12.5. \] This is an arithmetic series with: - First term \( a = 1 \), - Last term \( l = 12.5 \), - Number of terms \( n = 25 - 2 + 1 = 24 \). To find the sum \( S \) of an arithmetic series: \[ S = \frac{n}{2}(a + l) = \frac{24}{2}(1 + 12.5) = 12 \times 13.5 = 162. \] Thus, the final value of the original expression is: \[ \boxed{162}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad