Pregunta
Given:
2.4.1 Use the formula for
to derive a formula for
.
2.4.2 Prove that
.
2.4.3 Write down the maximum value of
2.4.1 Use the formula for
2.4.2 Prove that
2.4.3 Write down the maximum value of
Ask by Garza Jimenez. in South Africa
Mar 30,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The maximum value of
is
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Beyond the Answer
To derive the formula for
, we can use the identity for
and the Pythagorean identity
. The expression for
can be derived as follows:
Starting with
.
Utilize the known sine addition and subtraction identities, realizing that mirrors the structure of
but incorporates sine functions in a different arrangement.
Utilize the known sine addition and subtraction identities, realizing that
To prove that
, we can simplify the left side using the sine addition formula:
This demonstrates that the left-hand side equals the right-hand side, confirming the identity.
Lastly, for the maximum value of
, we note that the maximum value of
occurs at
because the maximum product
for normalized sine functions. Therefore:
Thus, the maximum value is
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium