Pregunta
upstudy study bank question image url

Find the least common multiple of these two expressions. \( 6 y^{3} x^{2} \) and \( 9 y^{5} x^{6} v \)

Ask by Olson Ramirez. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The least common multiple of \( 6 y^{3} x^{2} \) and \( 9 y^{5} x^{6} v \) is \( 18 y^5 x^6 v \).

Solución

To find the least common multiple (LCM) of the expressions \( 6 y^{3} x^{2} \) and \( 9 y^{5} x^{6} v \), we can follow these steps: 1. **Factor each expression into its prime factors.** - For \( 6 y^{3} x^{2} \): - The number \( 6 \) can be factored as \( 2 \times 3 \). - Therefore, \( 6 y^{3} x^{2} = 2 \times 3 \times y^{3} \times x^{2} \). - For \( 9 y^{5} x^{6} v \): - The number \( 9 \) can be factored as \( 3^2 \). - Therefore, \( 9 y^{5} x^{6} v = 3^2 \times y^{5} \times x^{6} \times v \). 2. **Identify the highest power of each factor present in both expressions.** - For the factor \( 2 \): - It appears in \( 6 y^{3} x^{2} \) as \( 2^1 \) and does not appear in the second expression. - Highest power: \( 2^1 \). - For the factor \( 3 \): - It appears as \( 3^1 \) in the first expression and \( 3^2 \) in the second expression. - Highest power: \( 3^2 \). - For the factor \( y \): - It appears as \( y^3 \) in the first expression and \( y^5 \) in the second expression. - Highest power: \( y^5 \). - For the factor \( x \): - It appears as \( x^2 \) in the first expression and \( x^6 \) in the second expression. - Highest power: \( x^6 \). - For the factor \( v \): - It does not appear in the first expression and appears as \( v^1 \) in the second expression. - Highest power: \( v^1 \). 3. **Combine these highest powers to form the LCM.** Therefore, the LCM is: \[ LCM = 2^1 \times 3^2 \times y^5 \times x^6 \times v^1 \] 4. **Write the final expression:** \[ LCM = 2 \times 9 \times y^5 \times x^6 \times v = 18 y^5 x^6 v \] Thus, the least common multiple of \( 6 y^{3} x^{2} \) and \( 9 y^{5} x^{6} v \) is \( 18 y^5 x^6 v \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the least common multiple (LCM) of the expressions \( 6 y^{3} x^{2} \) and \( 9 y^{5} x^{6} v \), we start by breaking each expression into its prime factorization and variables: 1. \( 6 y^{3} x^{2} = 2 \cdot 3 \cdot y^{3} \cdot x^{2} \) 2. \( 9 y^{5} x^{6} v = 3^2 \cdot y^{5} \cdot x^{6} \cdot v \) Next, we identify the LCM by taking the highest power of each factor: - For the constant, the maximum is \( 3^2 = 9 \). - For \( y \), the maximum power is \( y^{5} \). - For \( x \), the maximum power is \( x^{6} \). - Since \( v \) only appears in the second expression, we include \( v \) as is. Putting it all together, the least common multiple is: \[ LCM = 9 y^{5} x^{6} v \] So the least common multiple of \( 6 y^{3} x^{2} \) and \( 9 y^{5} x^{6} v \) is \( 9 y^{5} x^{6} v \).

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad