Pregunta
upstudy study bank question image url

One retailer charges \( \$ 1028 \) for a certain computer. A firm of tax accountants buys 7 of these computers. It makes a down payment of \( \$ 1100 \) and agrees to amortize the balance with monthly payments at \( 15 \% \) interest for 5 years. Prepare an amortization schedule showing the first four monthly payments for this loan. Write the equation that can be used to find the amount of each monthly payment. PMT \( =\frac{\mathrm{PV} \cdot \square}{1-(1+\square)} \) where PV \( =\square \) (Type integers or decimals. Simplify your answers.)

Ask by Mccoy Barker. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the monthly payment, use the formula: \[ PMT = \frac{6096 \times 0.0125}{1 - (1 + 0.0125)^{-60}} \approx 145.02 \] **Amortization Schedule for the First Four Payments:** | Payment | Payment Amount | Interest | Principal | Remaining Balance | |---------|----------------|----------|-----------|-------------------| | 1 | \$145.02 | \$76.20 | \$68.82 | \$6,027.18 | | 2 | \$145.02 | \$75.34 | \$69.68 | \$5,957.50 | | 3 | \$145.02 | \$74.46 | \$70.56 | \$5,886.94 | | 4 | \$145.02 | \$73.59 | \$71.43 | \$5,815.51 |

Solución

To solve this problem, we need to follow these steps: 1. **Calculate the total cost of the computers.** 2. **Determine the amount financed after the down payment.** 3. **Identify the monthly interest rate and the number of payments.** 4. **Use the amortization formula to find the monthly payment.** 5. **Prepare the amortization schedule for the first four payments.** ### Step 1: Calculate the total cost of the computers The cost of one computer is \( \$ 1028 \). The firm buys 7 computers, so the total cost (PV) is: \[ \text{Total Cost} = 1028 \times 7 \] ### Step 2: Determine the amount financed after the down payment The firm makes a down payment of \( \$ 1100 \). The amount financed (loan amount) is: \[ \text{Loan Amount} = \text{Total Cost} - \text{Down Payment} \] ### Step 3: Identify the monthly interest rate and the number of payments The annual interest rate is \( 15\% \), so the monthly interest rate \( r \) is: \[ r = \frac{15\%}{12} = \frac{0.15}{12} \] The total number of payments \( n \) over 5 years is: \[ n = 5 \times 12 \] ### Step 4: Use the amortization formula to find the monthly payment The formula for the monthly payment \( PMT \) is given by: \[ PMT = \frac{PV \cdot r}{1 - (1 + r)^{-n}} \] Where: - \( PV \) is the loan amount, - \( r \) is the monthly interest rate, - \( n \) is the total number of payments. ### Step 5: Prepare the amortization schedule for the first four payments Now, let's perform the calculations step by step. 1. Calculate the total cost of the computers. 2. Calculate the loan amount. 3. Calculate the monthly interest rate and number of payments. 4. Calculate the monthly payment using the formula. Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(5\times 12\) - step1: Multiply the numbers: \(60\) Calculate or simplify the expression \( 1028 * 7 \). Calculate the value by following steps: - step0: Calculate: \(1028\times 7\) - step1: Multiply the numbers: \(7196\) Calculate or simplify the expression \( (0.15 / 12) \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.15}{12}\) - step1: Convert the expressions: \(\frac{\frac{3}{20}}{12}\) - step2: Multiply by the reciprocal: \(\frac{3}{20}\times \frac{1}{12}\) - step3: Reduce the numbers: \(\frac{1}{20}\times \frac{1}{4}\) - step4: Multiply the fractions: \(\frac{1}{20\times 4}\) - step5: Multiply: \(\frac{1}{80}\) Calculate or simplify the expression \( 7196 - 1100 \). Calculate the value by following steps: - step0: Calculate: \(7196-1100\) - step1: Subtract the numbers: \(6096\) Calculate or simplify the expression \( \frac{6096 * 0.0125}{1 - (1 + 0.0125)^{-60}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{6096\times 0.0125}{1-\left(1+0.0125\right)^{-60}}\) - step1: Add the numbers: \(\frac{6096\times 0.0125}{1-1.0125^{-60}}\) - step2: Convert the expressions: \(\frac{6096\times 0.0125}{1-\left(\frac{81}{80}\right)^{-60}}\) - step3: Multiply the numbers: \(\frac{76.2}{1-\left(\frac{81}{80}\right)^{-60}}\) - step4: Subtract the numbers: \(\frac{76.2}{\frac{81^{60}-80^{60}}{81^{60}}}\) - step5: Convert the expressions: \(\frac{\frac{381}{5}}{\frac{81^{60}-80^{60}}{81^{60}}}\) - step6: Multiply by the reciprocal: \(\frac{381}{5}\times \frac{81^{60}}{81^{60}-80^{60}}\) - step7: Multiply the fractions: \(\frac{381\times 81^{60}}{5\left(81^{60}-80^{60}\right)}\) - step8: Multiply: \(\frac{381\times 81^{60}}{5\times 81^{60}-5\times 80^{60}}\) ### Summary of Calculations 1. **Total Cost of Computers:** \[ \text{Total Cost} = 1028 \times 7 = 7196 \] 2. **Loan Amount:** \[ \text{Loan Amount} = 7196 - 1100 = 6096 \] 3. **Monthly Interest Rate:** \[ r = \frac{15\%}{12} = 0.0125 \] 4. **Number of Payments:** \[ n = 5 \times 12 = 60 \] 5. **Monthly Payment Calculation:** Using the formula: \[ PMT = \frac{PV \cdot r}{1 - (1 + r)^{-n}} = \frac{6096 \cdot 0.0125}{1 - (1 + 0.0125)^{-60}} \approx 145.02 \] ### Amortization Schedule for the First Four Payments To create the amortization schedule, we will calculate the interest and principal portions of each payment for the first four months. 1. **First Payment:** - Interest for the first month: \[ \text{Interest} = \text{Loan Amount} \times r = 6096 \times 0.0125 \] - Principal repayment: \[ \text{Principal} = PMT - \text{Interest} \] - Remaining balance after the first payment: \[ \text{Remaining Balance} = \text{Loan Amount} - \text{Principal} \] 2. **Repeat for the next three payments.** Let's calculate the first payment details and then proceed to the next three payments. Calculate the value by following steps: - step0: Calculate: \(6096\times 0.0125\) - step1: Multiply the numbers: \(76.2\) Calculate or simplify the expression \( 145.023414 - (6096 * 0.0125) \). Calculate the value by following steps: - step0: Calculate: \(145.023414-\left(6096\times 0.0125\right)\) - step1: Multiply the numbers: \(145.023414-76.2\) - step2: Subtract the numbers: \(68.823414\) Calculate or simplify the expression \( 145.023414 - ((6096 - (145.023414 - 76.2)) * 0.0125) \). Calculate the value by following steps: - step0: Calculate: \(145.023414-\left(\left(6096-\left(145.023414-76.2\right)\right)\times 0.0125\right)\) - step1: Subtract the numbers: \(145.023414-\left(\left(6096-68.823414\right)\times 0.0125\right)\) - step2: Subtract the numbers: \(145.023414-\left(6027.176586\times 0.0125\right)\) - step3: Multiply the numbers: \(145.023414-75.339707325\) - step4: Subtract the numbers: \(69.683706675\) Calculate or simplify the expression \( (6096 - (145.023414 - 76.2) - ((6096 - (145.023414 - 76.2)) * 0.0125)) \). Calculate the value by following steps: - step0: Calculate: \(6096-\left(145.023414-76.2\right)-\left(\left(6096-\left(145.023414-76.2\right)\right)\times 0.0125\right)\) - step1: Subtract the numbers: \(6096-68.823414-\left(\left(6096-\left(145.023414-76.2\right)\right)\times 0.0125\right)\) - step2: Subtract the numbers: \(6096-68.823414-\left(\left(6096-68.823414\right)\times 0.0125\right)\) - step3: Subtract the numbers: \(6096-68.823414-\left(6027.176586\times 0.0125\right)\) - step4: Multiply the numbers: \(6096-68.823414-75.339707325\) - step5: Subtract the numbers: \(5951.836878675\) Calculate or simplify the expression \( (6096 - (145.023414 - 76.2)) * 0.0125 \). Calculate the value by following steps: - step0: Calculate: \(\left(6096-\left(145.023414-76.2\right)\right)\times 0.0125\) - step1: Subtract the numbers: \(\left(6096-68.823414\right)\times 0.0125\) - step2: Subtract the numbers: \(6027.176586\times 0.0125\) - step3: Multiply the numbers: \(75.339707325\) Calculate or simplify the expression \( 6096 - (145.023414 - 76.2) \). Calculate the value by following steps: - step0: Calculate: \(6096-\left(145.023414-76.2\right)\) - step1: Subtract the numbers: \(6096-68.823414\) - step2: Subtract the numbers: \(6027.176586\) ### Amortization Schedule for the First Four Payments 1. **First Payment:** - **Interest:** \[ \text{Interest} = 6096 \times 0.0125 = 76.2 \] - **Principal Repayment:** \[ \text{Principal} = 145.02 - 76.2 = 68.82 \] - **Remaining Balance:** \[ \text{Remaining Balance} = 6096 - 68.82 = 6027.18 \] 2. **Second Payment:** - **Interest:** \[ \text{Interest} = 6027.18 \times 0.0125 \approx 75.34 \] - **Principal Repayment:** \[ \text{Principal} = 145.02 - 75.34 \approx 69.68 \] - **Remaining Balance:** \[ \text{Remaining Balance} = 6027.18 - 69.68 \approx 5957.50 \] 3. **Third Payment:** - **Interest:** \[ \text{Interest} = 5957.50 \times 0.0125 \approx 74.46 \] - **Principal Repayment:** \[ \text{Principal} = 145.02 - 74.46 \approx 70.56 \] - **Remaining Balance:** \[ \text{Remaining Balance} = 5957.50 - 70.56 \approx 5886.94 \] 4. **Fourth Payment:** - **Interest:** \[ \text{Interest} = 5886.94 \times 0.0125 \approx 73.59 \] - **Principal Repayment:** \[ \text{Principal} = 145.02 - 73.59 \approx 71.43 \] - **Remaining Balance:** \[ \text{Remaining Balance} = 5886.94 - 71.43 \approx 5815.51 \] ### Amortization Schedule Summary | Payment Number | Payment Amount | Interest | Principal | Remaining Balance | |----------------|----------------|----------|-----------|-------------------| | 1 | 145.02 | 76.20 | 68.82 | 6027.18 | | 2 | 145.02 | 75.34 | 69.68 | 5957.50 | | 3 | 145.02 | 74.46 | 70.56 | 5886.94 | | 4 | 145.02 | 73.59 | 71.43 | 5815.51 | ### Final Equation for Monthly Payment The equation to find the amount of each monthly payment is: \[ PMT = \frac{6096 \cdot 0.0125}{1 - (1 + 0.0125)^{-60}} \] This completes the amortization schedule and the calculations for the loan.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the amount of each monthly payment, we first need to determine the total cost of the computers and the down payment. The total cost for 7 computers at \( \$ 1028 \) each is: \[ \text{Total cost} = 7 \times 1028 = \$ 7196 \] The firm makes a down payment of \( \$ 1100 \), so the balance to be financed is: \[ \text{Balance} = 7196 - 1100 = \$ 6096 \] Next, we will use the formula for the monthly payment (\( PMT \)): \[ PMT = \frac{PV \cdot r}{1 - (1 + r)^{-n}} \] Where: - \( PV \) is the present value or the amount to finance, which is \( 6096 \). - \( r \) is the monthly interest rate (annual rate divided by 12). At \( 15\% \), \( r = \frac{0.15}{12} = 0.0125 \). - \( n \) is the total number of payments (5 years = 5 \times 12 = 60 months). Now, inserting these values into the equation gives us: \[ PMT = \frac{6096 \cdot 0.0125}{1 - (1 + 0.0125)^{-60}} \] Calculating the denominator, we have: \[ 1 - (1 + 0.0125)^{-60} \approx 1 - 0.4632 \approx 0.5368 \] Thus, \[ PMT = \frac{6096 \cdot 0.0125}{0.5368} \approx \frac{76.20}{0.5368} \approx 142.59 \] The monthly payment is approximately \( \$ 142.59 \). **Amortization Schedule for the First Four Payments:** | Payment Number | Payment Amount | Interest Paid | Principal Paid | Remaining Balance | |----------------|----------------|----------------|----------------|-------------------| | 1 | 142.59 | 76.20 | 66.39 | 6030.61 | | 2 | 142.59 | 75.38 | 67.21 | 5963.40 | | 3 | 142.59 | 74.54 | 68.05 | 5895.35 | | 4 | 142.59 | 73.69 | 68.90 | 5826.45 | *Notes:* - Interest for the month is calculated as the remaining balance multiplied by the monthly interest rate. - Principal paid is the difference between payment amount and interest paid. - Remaining balance is updated after each payment by subtracting the principal paid. This fun financial journey through computers and payments shows how numbers can come together to create a manageable plan! 🎉💻

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad