Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the integral \( \int\left(x^{2}+3\right)^{2} d x \), we can start by expanding the integrand. 1. Expanding the expression: \[ (x^{2} + 3)^{2} = x^{4} + 6x^{2} + 9. \] 2. Now, integrate term by term: \[ \int (x^{4} + 6x^{2} + 9) dx = \int x^{4} dx + \int 6x^{2} dx + \int 9 dx. \] 3. Carrying out the integrations: \[ \frac{x^{5}}{5} + 6 \cdot \frac{x^{3}}{3} + 9x + C = \frac{x^{5}}{5} + 2x^{3} + 9x + C, \] where \( C \) is the constant of integration. Therefore, the final result is: \[ \int\left(x^{2}+3\right)^{2} d x = \frac{x^{5}}{5} + 2x^{3} + 9x + C. \]
