Balance the chemical equation below using the smallest possible whole number stoichiometric coefficients. \( \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To balance the equation \( \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe} + \mathrm{O}_{2} \), start by analyzing the number of atoms of each element on both sides. There are 2 iron (Fe) atoms and 3 oxygen (O) atoms in the reactant. To balance the iron atoms, you will need 2 iron atoms on the product side. For the oxygen, 3 atoms on the reactant side can be balanced by producing 1.5 molecules of \( \mathrm{O}_{2} \) (since each molecule contains 2 oxygen atoms). However, to use whole number coefficients, multiply the entire equation by 2: \[ 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Fe} + 3 \mathrm{O}_{2} \] So the balanced equation is: \[ 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Fe} + 3 \mathrm{O}_{2} \]
