b) \( \frac{2}{3}-\frac{3}{4} \cdot \frac{2}{3}+\frac{5}{6}= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the expression \( \frac{2}{3}-\frac{3}{4} \cdot \frac{2}{3}+\frac{5}{6} \), we follow the order of operations. First, perform the multiplication: \[ \frac{3}{4} \cdot \frac{2}{3} = \frac{3 \cdot 2}{4 \cdot 3} = \frac{6}{12} = \frac{1}{2}. \] Now, substitute this back into the expression: \[ \frac{2}{3} - \frac{1}{2} + \frac{5}{6}. \] Next, we need a common denominator to combine these fractions. The least common multiple of 3, 2, and 6 is 6. Now express each fraction with that common denominator: \[ \frac{2}{3} = \frac{4}{6}, \quad \frac{1}{2} = \frac{3}{6}, \quad \frac{5}{6} = \frac{5}{6}. \] Now the expression looks like this: \[ \frac{4}{6} - \frac{3}{6} + \frac{5}{6}. \] Combine the fractions as follows: \[ \frac{4 - 3 + 5}{6} = \frac{6}{6} = 1. \] Thus, the final answer is: \[ \boxed{1}. \]
