1. Show that the rods of the equation \( (r+1) x^{2}+4 x+1=r \) are real for all real values of r.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To demonstrate that the rods of the equation \( (r+1) x^{2}+4 x+1=r \) are real for all real values of \( r \), we can rearrange the equation to the standard quadratic form: \[ (r+1)x^2 + 4x + (1 - r) = 0 \] This is a quadratic equation in \( x \), and for the roots to be real, the discriminant must be non-negative. The discriminant \( D \) for a quadratic equation \( ax^2 + bx + c = 0 \) is given by: \[ D = b^2 - 4ac \] Applying this to our equation, where \( a = r + 1 \), \( b = 4 \), and \( c = 1 - r \): \[ D = 4^2 - 4(r + 1)(1 - r) \] \[ D = 16 - 4(r + 1)(1 - r) \] Expanding \( (r + 1)(1 - r) \): \[ (r + 1)(1 - r) = r - r^2 + 1 - r = 1 - r^2 \] Thus, \[ D = 16 - 4(1 - r^2) = 16 - 4 + 4r^2 = 12 + 4r^2 \] Since \( 4r^2 \) is always non-negative and adding 12 keeps it non-negative, we conclude that \( D \geq 12 \). Therefore, the roots of the quadratic equation are real for all real values of \( r \). Thus, the rods represented by this equation are always real regardless of the value of \( r \).
preguntas relacionadas
