Pregunta
upstudy study bank question image url

Having completed your first few tasks, you move now to a portion of the lab where important bacteria are being grown. Based on the data collected, you have determined that the population of this bacteria in the range measured can be modeled as \( A(t)=185(1.11)^{t} \), where \( t \) is given in days. To the nearest whole number, what will the bacteria population be after 6 days? The bacteria population will be Number Explain, in your own words and with your own work, how you arrived at this result. Be sure to explain using appropriate mathematical concepts to support your co-workers and supervisor.

Ask by Wang Tyler. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 6 days, the bacteria population will be approximately 346.

Solución

To find the population of bacteria after 6 days, we can substitute \( t = 6 \) into the given model \( A(t) = 185(1.11)^t \) and calculate the result. Given model: \( A(t) = 185(1.11)^t \) Substitute \( t = 6 \) into the model: \( A(6) = 185(1.11)^6 \) Now, we can calculate the population of bacteria after 6 days by substituting \( t = 6 \) into the model and solving for \( A(6) \). Calculate the value by following steps: - step0: Calculate: \(185\times 1.11^{6}\) - step1: Convert the expressions: \(185\left(\frac{111}{100}\right)^{6}\) - step2: Simplify: \(185\times \frac{111^{6}}{100^{6}}\) - step3: Rewrite the expression: \(5\times 37\times \frac{111^{6}}{100^{6}}\) - step4: Rewrite the expression: \(5\times 37\times \frac{111^{6}}{25^{6}\times 4^{6}}\) - step5: Rewrite the expression: \(5\times 37\times \frac{111^{6}}{5^{12}\times 4^{6}}\) - step6: Reduce the numbers: \(37\times \frac{111^{6}}{5^{11}\times 4^{6}}\) - step7: Multiply the fractions: \(\frac{37\times 111^{6}}{4096\times 5^{11}}\) The population of bacteria after 6 days will be approximately 346.03. Therefore, after 6 days, the bacteria population will be approximately 346.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the bacteria population after 6 days using the model \( A(t) = 185(1.11)^t \), we simply substitute \( t = 6 \) into the formula: \[ A(6) = 185(1.11)^6 \] First, calculate \( (1.11)^6 \): \[ (1.11)^6 \approx 1.8983 \] Now, multiply that by 185: \[ A(6) = 185 \times 1.8983 \approx 350.17 \] Rounding to the nearest whole number, the population of the bacteria after 6 days will be approximately 350. I approached this problem by recognizing that the expression calculates population growth according to exponential growth principles, where a constant percentage increase is applied (11% in this case) per day. It’s crucial to ensure that you follow the order of operations: first calculating the growth factor and then multiplying by the initial population. Such careful calculations help in accurately modeling real-world biological processes!

preguntas relacionadas

Latest Biology Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad