Responder
Il risultato è 285.
Solución
Calculate the value by following steps:
- step0: Calculate:
\(\frac{66\left(5\left(2\times 5-2\left(21-5\times 2^{2}\right)^{2}\right)^{2}\right)}{\left(2^{3}\times 10\right)}+\left(\frac{19}{\left(3+2\times 8\right)}\right)^{2}+\left(\frac{\left(2^{2}\times 3^{2}\right)}{\left(3+5^{2}-11\times 2\right)}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 15^{0}\)
- step1: Evaluate the power:
\(\frac{66\left(5\left(2\times 5-2\left(21-5\times 2^{2}\right)^{2}\right)^{2}\right)}{\left(2^{3}\times 10\right)}+\left(\frac{19}{\left(3+2\times 8\right)}\right)^{2}+\left(\frac{\left(2^{2}\times 3^{2}\right)}{\left(3+5^{2}-11\times 2\right)}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step2: Remove the parentheses:
\(\frac{66\times 5\left(2\times 5-2\left(21-5\times 2^{2}\right)^{2}\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step3: Multiply the terms:
\(\frac{66\times 5\left(2\times 5-2\left(21-20\right)^{2}\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step4: Subtract the numbers:
\(\frac{66\times 5\left(2\times 5-2\times 1^{2}\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step5: Evaluate the power:
\(\frac{66\times 5\left(2\times 5-2\times 1\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step6: Multiply the numbers:
\(\frac{66\times 5\left(10-2\times 1\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step7: Multiply:
\(\frac{66\times 5\left(10-2\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step8: Subtract the numbers:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step9: Multiply the numbers:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+\left(\frac{19}{3+16}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step10: Add the numbers:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+\left(\frac{19}{19}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step11: Divide the terms:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step12: Subtract the numbers:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{12^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\)
- step13: Subtract the numbers:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{12^{2}}{3^{2}}-9\right)^{3}}{7^{2}}\right)+7\times 1\)
- step14: Divide the terms:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(4^{2}-9\right)^{3}}{7^{2}}\right)+7\times 1\)
- step15: Subtract the numbers:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{7^{3}}{7^{2}}\right)+7\times 1\)
- step16: Multiply by \(a^{-n}:\)
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+7^{3}\times 7^{-2}\right)+7\times 1\)
- step17: Multiply the numbers:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-22}+7^{3}\times 7^{-2}\right)+7\times 1\)
- step18: Multiply the numbers:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{6^{2}}{3+5^{2}-22}+7^{3}\times 7^{-2}\right)+7\times 1\)
- step19: Calculate:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{6^{2}}{6}+7^{3}\times 7^{-2}\right)+7\times 1\)
- step20: Reduce the fraction:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(6+7^{3}\times 7^{-2}\right)+7\times 1\)
- step21: Multiply the numbers:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(6+7\right)+7\times 1\)
- step22: Add the numbers:
\(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+13+7\times 1\)
- step23: Multiply the terms:
\(\frac{330\times 8^{2}}{2^{3}\times 10}+1^{2}+13+7\times 1\)
- step24: Reduce the fraction:
\(33\times 2^{3}+1^{2}+13+7\times 1\)
- step25: Evaluate the power:
\(33\times 2^{3}+1+13+7\times 1\)
- step26: Multiply the terms:
\(264+1+13+7\times 1\)
- step27: Multiply:
\(264+1+13+7\)
- step28: Add the numbers:
\(285\)
Il risultato dell'espressione matematica è \( 285 \).
Se hai bisogno di ulteriori spiegazioni o di un altro calcolo, fammelo sapere!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución