Pregunta
upstudy study bank question image url

\( 66 \{ 5 \times [ 2 \times 5 - 2 \times ( 21 - 5 \times 2 ^ { 2 } ) ^ { 2 } ] ^ { 2 } \} : ( 2 ^ { 3 } \times 10 ) + [ 19 : ( 3 + 2 \times 8 ) ] ^ { 2 } , \{ ( 2 ^ { 2 } \times 3 ^ { 2 } ) : ( 3 + 5 ^ { 2 } - 11 \times 2 ) + [ ( 37 - 5 ^ { 2 } ) ^ { 2 } : 3 ^ { 2 } - ( 5 ^ { 2 } - 4 ^ { 2 } ) ] ^ { 3 } : 7 ^ { 2 } \} + 7 \times 15 ^ { 0 } \)

Ask by Hamilton Goodwin. in Italy
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Il risultato è 285.

Solución

Calculate the value by following steps: - step0: Calculate: \(\frac{66\left(5\left(2\times 5-2\left(21-5\times 2^{2}\right)^{2}\right)^{2}\right)}{\left(2^{3}\times 10\right)}+\left(\frac{19}{\left(3+2\times 8\right)}\right)^{2}+\left(\frac{\left(2^{2}\times 3^{2}\right)}{\left(3+5^{2}-11\times 2\right)}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 15^{0}\) - step1: Evaluate the power: \(\frac{66\left(5\left(2\times 5-2\left(21-5\times 2^{2}\right)^{2}\right)^{2}\right)}{\left(2^{3}\times 10\right)}+\left(\frac{19}{\left(3+2\times 8\right)}\right)^{2}+\left(\frac{\left(2^{2}\times 3^{2}\right)}{\left(3+5^{2}-11\times 2\right)}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step2: Remove the parentheses: \(\frac{66\times 5\left(2\times 5-2\left(21-5\times 2^{2}\right)^{2}\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step3: Multiply the terms: \(\frac{66\times 5\left(2\times 5-2\left(21-20\right)^{2}\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step4: Subtract the numbers: \(\frac{66\times 5\left(2\times 5-2\times 1^{2}\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step5: Evaluate the power: \(\frac{66\times 5\left(2\times 5-2\times 1\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step6: Multiply the numbers: \(\frac{66\times 5\left(10-2\times 1\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step7: Multiply: \(\frac{66\times 5\left(10-2\right)^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step8: Subtract the numbers: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+\left(\frac{19}{3+2\times 8}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step9: Multiply the numbers: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+\left(\frac{19}{3+16}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step10: Add the numbers: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+\left(\frac{19}{19}\right)^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step11: Divide the terms: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{\left(37-5^{2}\right)^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step12: Subtract the numbers: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{12^{2}}{3^{2}}-\left(5^{2}-4^{2}\right)\right)^{3}}{7^{2}}\right)+7\times 1\) - step13: Subtract the numbers: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(\frac{12^{2}}{3^{2}}-9\right)^{3}}{7^{2}}\right)+7\times 1\) - step14: Divide the terms: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{\left(4^{2}-9\right)^{3}}{7^{2}}\right)+7\times 1\) - step15: Subtract the numbers: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+\frac{7^{3}}{7^{2}}\right)+7\times 1\) - step16: Multiply by \(a^{-n}:\) \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-11\times 2}+7^{3}\times 7^{-2}\right)+7\times 1\) - step17: Multiply the numbers: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{2^{2}\times 3^{2}}{3+5^{2}-22}+7^{3}\times 7^{-2}\right)+7\times 1\) - step18: Multiply the numbers: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{6^{2}}{3+5^{2}-22}+7^{3}\times 7^{-2}\right)+7\times 1\) - step19: Calculate: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(\frac{6^{2}}{6}+7^{3}\times 7^{-2}\right)+7\times 1\) - step20: Reduce the fraction: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(6+7^{3}\times 7^{-2}\right)+7\times 1\) - step21: Multiply the numbers: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+\left(6+7\right)+7\times 1\) - step22: Add the numbers: \(\frac{66\times 5\times 8^{2}}{2^{3}\times 10}+1^{2}+13+7\times 1\) - step23: Multiply the terms: \(\frac{330\times 8^{2}}{2^{3}\times 10}+1^{2}+13+7\times 1\) - step24: Reduce the fraction: \(33\times 2^{3}+1^{2}+13+7\times 1\) - step25: Evaluate the power: \(33\times 2^{3}+1+13+7\times 1\) - step26: Multiply the terms: \(264+1+13+7\times 1\) - step27: Multiply: \(264+1+13+7\) - step28: Add the numbers: \(285\) Il risultato dell'espressione matematica è \( 285 \). Se hai bisogno di ulteriori spiegazioni o di un altro calcolo, fammelo sapere!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's break this complex expression down a bit! It all begins with simplifying what's inside the brackets and parentheses. Remember, PEMDAS is your best friend here: Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). Don't rush! Taking it step by step will help you solve it correctly. Now, as you tackle this challenge, keep an eye out for common pitfalls. A lot of mistakes occur when people forget to respect the order of operations, leading them to jumble addition and subtraction before multiplication and division. Double-check your calculations at each step, and ensure you're simplifying everything fully before moving on to the next part! Happy calculating!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad