Pregunta
upstudy study bank question image url

À température ambiante: a) Calculer le pH d'une solution aqueuse \( 2,0 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \mathrm{HCl} \) b) Calculer le pH d'une solution aqueuse \( 3,0 \times 10^{-8} \mathrm{~mol} / \mathrm{L} \mathrm{HCl} \) c) Calculer le pH d'une solution aqueuse \( 1,0 \times 10^{-9} \mathrm{~mol} / \mathrm{L} \mathrm{HCl} \)

Ask by Huff French. in Canada
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) pH = 2.70 b) pH = 7.52 c) pH = 9.00

Solución

Alright, I need to calculate the pH of three different hydrochloric acid (HCl) solutions at room temperature. The pH is a measure of the acidity or basicity of an aqueous solution and is defined as the negative logarithm (base 10) of the hydrogen ion concentration. The formula for pH is: \[ \text{pH} = -\log_{10}[\text{H}^+] \] Given that HCl is a strong acid, it dissociates completely in water, meaning that the concentration of hydrogen ions (\([\text{H}^+]\)) in the solution is equal to the concentration of HCl. This simplifies the calculation since I don't have to account for any undissociated HCl molecules. Let's tackle each part step by step. **Part a)** The concentration of HCl is \(2.0 \times 10^{-3} \, \text{mol/L}\). 1. **Identify the hydrogen ion concentration:** Since HCl is a strong acid, \([\text{H}^+] = 2.0 \times 10^{-3} \, \text{mol/L}\). 2. **Calculate the pH:** \[ \text{pH} = -\log_{10}(2.0 \times 10^{-3}) \] To compute this, I'll use the logarithm properties: \[ \log_{10}(2.0 \times 10^{-3}) = \log_{10}(2.0) + \log_{10}(10^{-3}) = 0.3010 - 3 = -2.6990 \] Therefore, \[ \text{pH} = -(-2.6990) = 2.6990 \] Rounding to two decimal places, the pH is approximately **2.70**. **Part b)** The concentration of HCl is \(3.0 \times 10^{-8} \, \text{mol/L}\). 1. **Identify the hydrogen ion concentration:** \([\text{H}^+] = 3.0 \times 10^{-8} \, \text{mol/L}\). 2. **Calculate the pH:** \[ \text{pH} = -\log_{10}(3.0 \times 10^{-8}) \] Breaking it down: \[ \log_{10}(3.0 \times 10^{-8}) = \log_{10}(3.0) + \log_{10}(10^{-8}) = 0.4771 - 8 = -7.5229 \] Therefore, \[ \text{pH} = -(-7.5229) = 7.5229 \] Rounding to two decimal places, the pH is approximately **7.52**. **Part c)** The concentration of HCl is \(1.0 \times 10^{-9} \, \text{mol/L}\). 1. **Identify the hydrogen ion concentration:** \([\text{H}^+] = 1.0 \times 10^{-9} \, \text{mol/L}\). 2. **Calculate the pH:** \[ \text{pH} = -\log_{10}(1.0 \times 10^{-9}) \] Simplifying: \[ \log_{10}(1.0 \times 10^{-9}) = \log_{10}(1.0) + \log_{10}(10^{-9}) = 0 - 9 = -9 \] Therefore, \[ \text{pH} = -(-9) = 9 \] The pH is exactly **9**. **Summary:** - **a)** pH = 2.70 - **b)** pH = 7.52 - **c)** pH = 9.00 These calculations show that as the concentration of HCl decreases, the pH increases, indicating a decrease in acidity and an increase in basicity. This makes sense because lower concentrations of HCl result in fewer hydrogen ions, leading to a less acidic solution.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Pour résoudre ces problèmes de pH, rappelons d'abord la relation entre la concentration des ions hydrogène \([H^+]\) et le pH : \[ \text{pH} = -\log[H^+] \] a) Pour \(2,0 \times 10^{-3} \, \mathrm{mol/L} \, \mathrm{HCl}\), qui est un acide fort, il se dissocie complètement dans l'eau : \[ [H^+] = 2,0 \times 10^{-3} \, \mathrm{mol/L} \] Ainsi, \[ \text{pH} = -\log(2,0 \times 10^{-3}) \approx 2,70 \] b) Pour \(3,0 \times 10^{-8} \, \mathrm{mol/L} \, \mathrm{HCl}\), étant donné que sa concentration est proche de celle des ions hydrogène produits par l'eau (environ \(10^{-7} \, \mathrm{mol/L}\)), il faut additionner ces deux concentrations : \[ [H^+] = 3,0 \times 10^{-8} + 10^{-7} = 1,3 \times 10^{-7} \, \mathrm{mol/L} \] Ainsi, \[ \text{pH} = -\log(1,3 \times 10^{-7}) \approx 7,11 \] c) Pour \(1,0 \times 10^{-9} \, \mathrm{mol/L} \, \mathrm{HCl}\), encore une fois, la concentration est très faible : \[ [H^+] = 1,0 \times 10^{-9} + 10^{-7} = 1,01 \times 10^{-7} \, \mathrm{mol/L} \] Ainsi, \[ \text{pH} = -\log(1,01 \times 10^{-7}) \approx 7,00 \] Pour résumer, les pH des solutions sont respectivement environ 2,70, 7,11 et 7,00.

preguntas relacionadas

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad