Pregunta
upstudy study bank question image url

\begin{tabular}{l} ch 4 Jack and Jill are saving for a rainy day and decide to put \( \$ 50 \) \\ away in their local bank every year for the next twenty-five years. The \\ local Up-the-Hill Bank will pay them \( 7 \% \) on their account. If Jack and \\ Jill put the money in the account faithfully at the end of every year, how \\ much will they have in it at the end of twenty-five years? (Hint this is an \\ annuity with payments each year, not one tump payment). \\ O\$3162.45 \\ \hline\( \$ 3289.18 \) \\ \hline\( \$ 4122.01 \) \\ \hline \$3987.89 \end{tabular}

Ask by Johnson Wang. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Jack and Jill will have approximately \$3,162.45 in their account after twenty-five years.

Solución

To calculate the total amount that Jack and Jill will have in their account at the end of twenty-five years, we can use the formula for the future value of an annuity: \[ FV = P \times \left( \frac{(1 + r)^n - 1}{r} \right) \] Where: - \( FV \) is the future value of the annuity - \( P \) is the annual payment - \( r \) is the annual interest rate - \( n \) is the number of years Given: - \( P = \$50 \) (annual payment) - \( r = 7\% = 0.07 \) (annual interest rate) - \( n = 25 \) (number of years) Substitute the values into the formula: \[ FV = 50 \times \left( \frac{(1 + 0.07)^{25} - 1}{0.07} \right) \] Now, we can calculate the future value of the annuity. Calculate the value by following steps: - step0: Calculate: \(\frac{50\left(\left(1+0.07\right)^{25}-1\right)}{0.07}\) - step1: Add the numbers: \(\frac{50\left(1.07^{25}-1\right)}{0.07}\) - step2: Convert the expressions: \(\frac{50\left(\left(\frac{107}{100}\right)^{25}-1\right)}{0.07}\) - step3: Subtract the numbers: \(\frac{50\times \frac{107^{25}-100^{25}}{100^{25}}}{0.07}\) - step4: Multiply the numbers: \(\frac{\frac{107^{25}-100^{25}}{50^{24}\times 2^{25}}}{0.07}\) - step5: Convert the expressions: \(\frac{\frac{107^{25}-100^{25}}{50^{24}\times 2^{25}}}{\frac{7}{100}}\) - step6: Multiply by the reciprocal: \(\frac{107^{25}-100^{25}}{50^{24}\times 2^{25}}\times \frac{100}{7}\) - step7: Rewrite the expression: \(\frac{107^{25}-100^{25}}{50^{24}\times 2^{25}}\times \frac{50\times 2}{7}\) - step8: Reduce the numbers: \(\frac{107^{25}-100^{25}}{50^{23}\times 2^{25}}\times \frac{2}{7}\) - step9: Rewrite the expression: \(\frac{107^{25}-100^{25}}{2^{23}\times 25^{23}\times 2^{25}}\times \frac{2}{7}\) - step10: Reduce the numbers: \(\frac{107^{25}-100^{25}}{2^{22}\times 25^{23}\times 2^{25}}\times \frac{1}{7}\) - step11: Multiply the fractions: \(\frac{107^{25}-100^{25}}{2^{47}\times 25^{23}\times 7}\) - step12: Multiply: \(\frac{107^{25}-100^{25}}{7\times 2^{47}\times 25^{23}}\) The total amount that Jack and Jill will have in their account at the end of twenty-five years is approximately $3162.45.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When Jack and Jill save \( \$50 \) annually for twenty-five years at an interest rate of \( 7\% \), they are essentially participating in an ordinary annuity. To calculate how much money they will have at the end of the period, we can use the future value of an annuity formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] where \( P \) is the annual payment (\$50), \( r \) is the annual interest rate (0.07), and \( n \) is the number of payments (25). Plugging in these numbers, they will accumulate about \$4,122.01 after 25 years. Jack and Jill won't just have a cozy sum stashed away; they'll witness the magic of compound interest working for them! This method teaches the power of investing consistently over time—a principle that can be applied not only to savings but also to investments in stocks, funds, or retirement accounts. So, if they ever think of starting a business, they can draw on this knowledge to fund it!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad