Pregunta
upstudy study bank question image url

4. ( 3 points) If the time required to scan one customer's bags is exponentially distributed with mean of 5 seconds, then what is the likelihood that it will take no more than 2 seconds?

Ask by Parsons Allan. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that it will take no more than 2 seconds to scan one customer's bags is approximately 32.97%.

Solución

To solve this problem, we need to use the properties of the exponential distribution. The exponential distribution is defined by its probability density function (PDF): \[ f(t; \lambda) = \lambda e^{-\lambda t} \] where \( \lambda \) is the rate parameter, which is the reciprocal of the mean. Given that the mean time to scan one customer's bags is 5 seconds, we can calculate \( \lambda \) as follows: \[ \lambda = \frac{1}{\text{mean}} = \frac{1}{5} \text{ seconds}^{-1} \] Next, we want to find the probability that the time \( T \) to scan a customer's bags is less than or equal to 2 seconds. This is given by the cumulative distribution function (CDF) of the exponential distribution: \[ P(T \leq t) = 1 - e^{-\lambda t} \] Substituting \( \lambda \) and \( t = 2 \) seconds into the CDF: \[ P(T \leq 2) = 1 - e^{-\frac{1}{5} \cdot 2} \] Now, let's calculate this probability. 1. Calculate \( -\frac{1}{5} \cdot 2 \). 2. Calculate \( e^{-\frac{2}{5}} \). 3. Finally, compute \( 1 - e^{-\frac{2}{5}} \). Let's perform these calculations step by step. First, we calculate \( -\frac{2}{5} \): \[ -\frac{2}{5} = -0.4 \] Next, we calculate \( e^{-0.4} \): Now, I will calculate \( e^{-0.4} \) and then find \( 1 - e^{-0.4} \). Simplify the expression by following steps: - step0: Simplify: \(e^{-0.4}\) - step1: Convert the expressions: \(e^{-\frac{2}{5}}\) - step2: Express with a positive exponent: \(\frac{1}{e^{\frac{2}{5}}}\) - step3: Transform the expression: \(\frac{1}{\sqrt[5]{e^{2}}}\) - step4: Multiply by the Conjugate: \(\frac{\sqrt[5]{e^{3}}}{\sqrt[5]{e^{2}}\times \sqrt[5]{e^{3}}}\) - step5: Multiply the numbers: \(\frac{\sqrt[5]{e^{3}}}{e}\) Calculate or simplify the expression \( 1 - e^{-0.4} \). Calculate the value by following steps: - step0: Calculate: \(1-e^{-0.4}\) - step1: Convert the expressions: \(1-e^{-\frac{2}{5}}\) - step2: Evaluate the power: \(1-\frac{1}{e^{\frac{2}{5}}}\) - step3: Calculate: \(1-\frac{e^{\frac{3}{5}}}{e}\) - step4: Reduce fractions to a common denominator: \(\frac{e}{e}-\frac{e^{\frac{3}{5}}}{e}\) - step5: Transform the expression: \(\frac{e-e^{\frac{3}{5}}}{e}\) - step6: Simplify: \(\frac{e+\sqrt[5]{e^{3}}}{e}\) The calculation of \( e^{-0.4} \) gives us approximately \( 0.67032 \). Now, we can find the probability that it will take no more than 2 seconds: \[ P(T \leq 2) = 1 - e^{-0.4} \approx 1 - 0.67032 \approx 0.32968 \] Thus, the likelihood that it will take no more than 2 seconds to scan one customer's bags is approximately \( 0.32968 \) or \( 32.97\% \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this, we first need to recognize that if the mean time is 5 seconds, the rate parameter (λ) of the exponential distribution can be calculated as λ = 1/mean = 1/5 = 0.2. The cumulative distribution function (CDF) for an exponential distribution is given by F(t) = 1 - e^(-λt). We can plug in our values with t = 2 seconds: F(2) = 1 - e^(-0.2 * 2) = 1 - e^(-0.4) ≈ 1 - 0.6703 = 0.3297. Thus, the likelihood that it will take no more than 2 seconds is approximately 32.97%. Remember, exponential distributions can seem counterintuitive at first; events are actually more likely to happen sooner than later, which makes the math behind it fascinating! Also, if you're ever staring at these problems, mixing up your λ and mean can lead to incorrect conclusions, so keep those units straight!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad