Pregunta
upstudy study bank question image url

The equation of the demand function is \( q=-38.79 p+787.21 \). According to the correlation coefficient, is the demand function a good fit for the data? Since \( |r|<0.8 \), then the regression line is a good fit. since \( |r|>0.8 \), then the regression line is a good fit. Since \( |r|<0.8 \), then the regression line is not a good fit. Since \( |r|>0.8 \), then the regression line is not a good fit.

Ask by Reyes Wheeler. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

If \( |r| < 0.8 \), the regression line is not a good fit.

Solución

To determine whether the demand function \( q = -38.79p + 787.21 \) is a good fit for the data based on the correlation coefficient \( r \), we need to analyze the value of \( |r| \). 1. **Understanding the correlation coefficient \( r \)**: - The correlation coefficient \( r \) measures the strength and direction of a linear relationship between two variables. - The value of \( r \) ranges from -1 to 1. - A value of \( |r| < 0.8 \) indicates a weak correlation, while \( |r| > 0.8 \) indicates a strong correlation. 2. **Interpreting the options**: - If \( |r| < 0.8 \), the regression line is considered a good fit for the data. - If \( |r| > 0.8 \), the regression line is considered a good fit for the data. - The statements provided seem to have some inconsistencies regarding the interpretation of \( |r| \). 3. **Conclusion**: - Since the options provided are contradictory, we need to clarify that typically: - If \( |r| > 0.8 \), the regression line is a good fit. - If \( |r| < 0.8 \), the regression line is not a good fit. Given this understanding, the correct interpretation based on the correlation coefficient would be: - If \( |r| < 0.8 \), then the regression line is not a good fit. - If \( |r| > 0.8 \), then the regression line is a good fit. Thus, the correct answer is: - Since \( |r| < 0.8 \), then the regression line is not a good fit.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The demand function you've presented indicates a linear relationship between price (\(p\)) and quantity demanded (\(q\)). A correlation coefficient (r) close to 1 or -1 reflects a strong relationship between the variables, while one near 0 indicates a weak relationship. In general, \( |r| > 0.8 \) suggests a strong correlation, while \( |r| < 0.8 \) indicates a weaker one, implying a less reliable fit. In real-world applications, businesses utilize demand functions like this to forecast sales. By calculating how quantity demanded changes with price changes, companies can optimize pricing strategies and inventory management, ensuring they meet consumer demand without overextending their resources. Understanding the demand curve also helps in creating targeted marketing campaigns that resonate with potential customers.

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad