Pregunta
upstudy study bank question image url

(B) \( t^{2}+4 t-21 \) (C) \( t^{2}+5 t-6 \) (D) \( t^{2}-2 t-8 \) (E) \( t^{2}-10 t-11 \) (F) \( t^{2}+4 t-12 \) (G) \( t^{2}-8 t-20 \) (H) \( t^{2}-t-72 \)

Ask by Jimenez Gross. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the factorizations: (B) \( t^{2} + 4t - 21 = (t + 7)(t - 3) \) (C) \( t^{2} + 5t - 6 = (t + 6)(t - 1) \) (D) \( t^{2} - 2t - 8 = (t + 2)(t - 4) \) (E) \( t^{2} - 10t - 11 = (t - 11)(t + 1) \) (F) \( t^{2} + 4t - 12 = (t + 6)(t - 2) \) (G) \( t^{2} - 8t - 20 = (t - 10)(t + 2) \) (H) \( t^{2} - t - 72 = (t + 8)(t - 9) \)

Solución

Below are the factorizations for each quadratic: (B) t² + 4t – 21   We need two numbers that multiply to –21 and add to 4. Since 7 × (–3) = –21 and 7 + (–3) = 4, we have:   t² + 4t – 21 = (t + 7)(t – 3). (C) t² + 5t – 6   Find factors of –6 that add to 5. Since 6 × (–1) = –6 and 6 + (–1) = 5, we get:   t² + 5t – 6 = (t + 6)(t – 1). (D) t² – 2t – 8   Look for two numbers multiplying to –8 and adding to –2. Since 2 × (–4) = –8 and 2 + (–4) = –2, the factorization is:   t² – 2t – 8 = (t + 2)(t – 4). (E) t² – 10t – 11   We need two numbers whose product is –11 and whose sum is –10. Since (–11) × 1 = –11 and (–11) + 1 = –10, we have:   t² – 10t – 11 = (t – 11)(t + 1). (F) t² + 4t – 12   Find two numbers multiplying to –12 and adding to 4. Since 6 × (–2) = –12 and 6 + (–2) = 4, the factorization is:   t² + 4t – 12 = (t + 6)(t – 2). (G) t² – 8t – 20   We seek two numbers whose product is –20 and whose sum is –8. Since (–10) × 2 = –20 and (–10) + 2 = –8, we get:   t² – 8t – 20 = (t – 10)(t + 2). (H) t² – t – 72   We need numbers that multiply to –72 and add to –1. Since 8 × (–9) = –72 and 8 + (–9) = –1, it factors as:   t² – t – 72 = (t + 8)(t – 9). Each quadratic factors into two binomials as shown above.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that quadratic equations like the ones you've listed have been studied for centuries? The earliest quadratic solutions can be traced back to ancient Babylonian mathematicians around 2000 BC! They had their own methods for solving these problems, using algorithms that were remarkably advanced for their time. Quadratics themselves were formalized by mathematicians like Al-Khwarizmi in the 9th century, contributing to the word "algebra." Fun, right? In the real world, quadratic equations pop up everywhere! From calculating projectile motion in sports to optimizing areas in architecture and engineering, these equations help in making predictions and solving practical problems. For example, when a basketball is shot toward the hoop, its trajectory can be modeled using a quadratic equation. Understanding these equations enables athletes and coaches to analyze performance effectively!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad