Responder
Simon's investment grows over 8 years as follows:
- **Year 1**: R11,500.00
- **Year 2**: R13,225.00
- **Year 3**: R15,208.75
- **Year 4**: R17,490.06
- **Year 5**: R20,113.57
- **Year 6**: R23,130.61
- **Year 7**: R26,600.20
- **Year 8**: R30,590.23
After 10 years, the investment is worth approximately R40,455.58.
At \( 6 \frac{1}{2} \) years, the investment is estimated to be around R24,865.41.
Simon's investment will reach approximately R14,500 in about 3.14 years.
Solución
Let's solve Simon's investment problem step by step.
### Known Conditions:
- Initial investment (P): R10,000
- Annual interest rate (r): 15% or 0.15
- Investment duration: 8 years
### 1.1 Construct a table for the value of the investment at the end of each year.
The formula for compound interest is given by:
\[
A = P(1 + r)^n
\]
Where:
- \( A \) = the amount of money accumulated after n years, including interest.
- \( P \) = the principal amount (initial investment).
- \( r \) = annual interest rate (decimal).
- \( n \) = number of years the money is invested.
We will calculate the value of the investment at the end of each year for 8 years.
Let's calculate the values for each year from 1 to 8.
### Calculations for each year:
- Year 1: \( A_1 = 10000(1 + 0.15)^1 \)
- Year 2: \( A_2 = 10000(1 + 0.15)^2 \)
- Year 3: \( A_3 = 10000(1 + 0.15)^3 \)
- Year 4: \( A_4 = 10000(1 + 0.15)^4 \)
- Year 5: \( A_5 = 10000(1 + 0.15)^5 \)
- Year 6: \( A_6 = 10000(1 + 0.15)^6 \)
- Year 7: \( A_7 = 10000(1 + 0.15)^7 \)
- Year 8: \( A_8 = 10000(1 + 0.15)^8 \)
Now, let's perform these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(10000\left(1+0.15\right)^{1}\)
- step1: Add the numbers:
\(10000\times 1.15^{1}\)
- step2: Calculate:
\(10000\times 1.15\)
- step3: Multiply the numbers:
\(11500\)
Calculate or simplify the expression \( 10000*(1 + 0.15)^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(10000\left(1+0.15\right)^{2}\)
- step1: Add the numbers:
\(10000\times 1.15^{2}\)
- step2: Convert the expressions:
\(10000\left(\frac{23}{20}\right)^{2}\)
- step3: Evaluate the power:
\(10000\times \frac{529}{400}\)
- step4: Multiply:
\(13225\)
Calculate or simplify the expression \( 10000*(1 + 0.15)^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(10000\left(1+0.15\right)^{3}\)
- step1: Add the numbers:
\(10000\times 1.15^{3}\)
- step2: Convert the expressions:
\(10000\left(\frac{23}{20}\right)^{3}\)
- step3: Evaluate the power:
\(10000\times \frac{12167}{8000}\)
- step4: Multiply:
\(\frac{60835}{4}\)
Calculate or simplify the expression \( 10000*(1 + 0.15)^5 \).
Calculate the value by following steps:
- step0: Calculate:
\(10000\left(1+0.15\right)^{5}\)
- step1: Add the numbers:
\(10000\times 1.15^{5}\)
- step2: Convert the expressions:
\(10000\left(\frac{23}{20}\right)^{5}\)
- step3: Simplify:
\(10000\times \frac{23^{5}}{20^{5}}\)
- step4: Rewrite the expression:
\(400\times 25\times \frac{23^{5}}{20^{5}}\)
- step5: Rewrite the expression:
\(20^{2}\times 25\times \frac{23^{5}}{20^{5}}\)
- step6: Reduce the numbers:
\(25\times \frac{23^{5}}{20^{3}}\)
- step7: Rewrite the expression:
\(25\times \frac{23^{5}}{5^{3}\times 4^{3}}\)
- step8: Rewrite the expression:
\(5^{2}\times \frac{23^{5}}{5^{3}\times 4^{3}}\)
- step9: Reduce the numbers:
\(1\times \frac{23^{5}}{5\times 4^{3}}\)
- step10: Multiply:
\(\frac{23^{5}}{320}\)
Calculate or simplify the expression \( 10000*(1 + 0.15)^8 \).
Calculate the value by following steps:
- step0: Calculate:
\(10000\left(1+0.15\right)^{8}\)
- step1: Add the numbers:
\(10000\times 1.15^{8}\)
- step2: Convert the expressions:
\(10000\left(\frac{23}{20}\right)^{8}\)
- step3: Simplify:
\(10000\times \frac{23^{8}}{20^{8}}\)
- step4: Rewrite the expression:
\(400\times 25\times \frac{23^{8}}{20^{8}}\)
- step5: Rewrite the expression:
\(20^{2}\times 25\times \frac{23^{8}}{20^{8}}\)
- step6: Reduce the numbers:
\(25\times \frac{23^{8}}{20^{6}}\)
- step7: Rewrite the expression:
\(25\times \frac{23^{8}}{5^{6}\times 4^{6}}\)
- step8: Rewrite the expression:
\(5^{2}\times \frac{23^{8}}{5^{6}\times 4^{6}}\)
- step9: Reduce the numbers:
\(1\times \frac{23^{8}}{5^{4}\times 4^{6}}\)
- step10: Multiply:
\(\frac{23^{8}}{2560000}\)
Calculate or simplify the expression \( 10000*(1 + 0.15)^6 \).
Calculate the value by following steps:
- step0: Calculate:
\(10000\left(1+0.15\right)^{6}\)
- step1: Add the numbers:
\(10000\times 1.15^{6}\)
- step2: Convert the expressions:
\(10000\left(\frac{23}{20}\right)^{6}\)
- step3: Simplify:
\(10000\times \frac{23^{6}}{20^{6}}\)
- step4: Rewrite the expression:
\(400\times 25\times \frac{23^{6}}{20^{6}}\)
- step5: Rewrite the expression:
\(20^{2}\times 25\times \frac{23^{6}}{20^{6}}\)
- step6: Reduce the numbers:
\(25\times \frac{23^{6}}{20^{4}}\)
- step7: Rewrite the expression:
\(25\times \frac{23^{6}}{5^{4}\times 4^{4}}\)
- step8: Rewrite the expression:
\(5^{2}\times \frac{23^{6}}{5^{4}\times 4^{4}}\)
- step9: Reduce the numbers:
\(1\times \frac{23^{6}}{5^{2}\times 4^{4}}\)
- step10: Multiply:
\(\frac{23^{6}}{80^{2}}\)
- step11: Simplify:
\(\frac{23^{6}}{6400}\)
Calculate or simplify the expression \( 10000*(1 + 0.15)^7 \).
Calculate the value by following steps:
- step0: Calculate:
\(10000\left(1+0.15\right)^{7}\)
- step1: Add the numbers:
\(10000\times 1.15^{7}\)
- step2: Convert the expressions:
\(10000\left(\frac{23}{20}\right)^{7}\)
- step3: Simplify:
\(10000\times \frac{23^{7}}{20^{7}}\)
- step4: Rewrite the expression:
\(400\times 25\times \frac{23^{7}}{20^{7}}\)
- step5: Rewrite the expression:
\(20^{2}\times 25\times \frac{23^{7}}{20^{7}}\)
- step6: Reduce the numbers:
\(25\times \frac{23^{7}}{20^{5}}\)
- step7: Rewrite the expression:
\(25\times \frac{23^{7}}{5^{5}\times 4^{5}}\)
- step8: Rewrite the expression:
\(5^{2}\times \frac{23^{7}}{5^{5}\times 4^{5}}\)
- step9: Reduce the numbers:
\(1\times \frac{23^{7}}{5^{3}\times 4^{5}}\)
- step10: Multiply:
\(\frac{23^{7}}{128000}\)
Calculate or simplify the expression \( 10000*(1 + 0.15)^4 \).
Calculate the value by following steps:
- step0: Calculate:
\(10000\left(1+0.15\right)^{4}\)
- step1: Add the numbers:
\(10000\times 1.15^{4}\)
- step2: Convert the expressions:
\(10000\left(\frac{23}{20}\right)^{4}\)
- step3: Simplify:
\(10000\times \frac{23^{4}}{20^{4}}\)
- step4: Rewrite the expression:
\(400\times 25\times \frac{23^{4}}{20^{4}}\)
- step5: Rewrite the expression:
\(20^{2}\times 25\times \frac{23^{4}}{20^{4}}\)
- step6: Reduce the numbers:
\(25\times \frac{23^{4}}{20^{2}}\)
- step7: Rewrite the expression:
\(25\times \frac{23^{4}}{5^{2}\times 4^{2}}\)
- step8: Rewrite the expression:
\(5^{2}\times \frac{23^{4}}{5^{2}\times 4^{2}}\)
- step9: Reduce the numbers:
\(1\times \frac{23^{4}}{4^{2}}\)
- step10: Multiply:
\(\frac{23^{4}}{4^{2}}\)
- step11: Simplify:
\(\frac{23^{4}}{16}\)
### 1.1 Investment Value Table
Here are the calculated values for Simon's investment at the end of each year:
| Year | Value (R) |
|------|----------------|
| 1 | 11,500.00 |
| 2 | 13,225.00 |
| 3 | 15,208.75 |
| 4 | 17,490.06 |
| 5 | 20,113.57 |
| 6 | 23,130.61 |
| 7 | 26,600.20 |
| 8 | 30,590.23 |
### 1.2 Determine the value of the investment after 10 years
To find the value of the investment after 10 years, we will use the same formula:
\[
A_{10} = 10000(1 + 0.15)^{10}
\]
Let's calculate this value.
Calculate the value by following steps:
- step0: Calculate:
\(10000\left(1+0.15\right)^{10}\)
- step1: Add the numbers:
\(10000\times 1.15^{10}\)
- step2: Convert the expressions:
\(10000\left(\frac{23}{20}\right)^{10}\)
- step3: Simplify:
\(10000\times \frac{23^{10}}{20^{10}}\)
- step4: Rewrite the expression:
\(400\times 25\times \frac{23^{10}}{20^{10}}\)
- step5: Rewrite the expression:
\(20^{2}\times 25\times \frac{23^{10}}{20^{10}}\)
- step6: Reduce the numbers:
\(25\times \frac{23^{10}}{20^{8}}\)
- step7: Rewrite the expression:
\(25\times \frac{23^{10}}{5^{8}\times 4^{8}}\)
- step8: Rewrite the expression:
\(5^{2}\times \frac{23^{10}}{5^{8}\times 4^{8}}\)
- step9: Reduce the numbers:
\(1\times \frac{23^{10}}{5^{6}\times 4^{8}}\)
- step10: Multiply the fractions:
\(\frac{23^{10}}{15625\times 4^{8}}\)
- step11: Expand the expression:
\(\frac{23^{10}}{1024000000}\)
The value of Simon's investment after 10 years is approximately **R40,455.58**.
### 1.3 Graph of Simon's Investment Over 8 Years
To create a graph, we will plot the values from the table constructed in 1.1. The x-axis will represent the years (1 to 8), and the y-axis will represent the investment value in Rands.
### 1.4 Estimate the value of the investment after \( 6 \frac{1}{2} \) years
From the table, we can see the values at year 6 and year 7:
- Year 6: R23,130.61
- Year 7: R26,600.20
To estimate the value at \( 6 \frac{1}{2} \) years, we can interpolate between these two values.
\[
\text{Estimated Value} = \text{Value at Year 6} + \left(\frac{1}{2}\right) \times (\text{Value at Year 7} - \text{Value at Year 6})
\]
Let's calculate this estimated value.
Calculate the value by following steps:
- step0: Calculate:
\(23130.61+0.5\left(26600.2-23130.61\right)\)
- step1: Subtract the numbers:
\(23130.61+0.5\times 3469.59\)
- step2: Multiply the numbers:
\(23130.61+1734.795\)
- step3: Add the numbers:
\(24865.405\)
The estimated value of Simon's investment after \( 6 \frac{1}{2} \) years is approximately **R24,865.41**.
### 1.5 Estimate when the investment will reach approximately R14,500
From the table, we can see that the investment value is below R14,500 at year 5 (R20,113.57) and above R14,500 at year 6 (R23,130.61).
To estimate when the investment will reach R14,500, we can use linear interpolation between year 5 and year 6.
Using the values:
- Year 5: R20,113.57
- Year 6: R23,130.61
We can set up the equation:
\[
\text{Year} = 5 + \left(\frac{14500 - 20113.57}{23130.61 - 20113.57}\right)
\]
Let's calculate this year.
Calculate the value by following steps:
- step0: Calculate:
\(5+\frac{\left(14500-20113.57\right)}{\left(23130.61-20113.57\right)}\)
- step1: Remove the parentheses:
\(5+\frac{14500-20113.57}{23130.61-20113.57}\)
- step2: Subtract the numbers:
\(5+\frac{-5613.57}{23130.61-20113.57}\)
- step3: Subtract the numbers:
\(5+\frac{-5613.57}{3017.04}\)
- step4: Divide the terms:
\(5-\frac{187119}{100568}\)
- step5: Reduce fractions to a common denominator:
\(\frac{5\times 100568}{100568}-\frac{187119}{100568}\)
- step6: Transform the expression:
\(\frac{5\times 100568-187119}{100568}\)
- step7: Multiply the numbers:
\(\frac{502840-187119}{100568}\)
- step8: Subtract the numbers:
\(\frac{315721}{100568}\)
The estimated year when Simon's investment will reach approximately R14,500 is around **3.14 years**.
### Summary of Results:
1. **Investment Value Table**: Values calculated for each year from 1 to 8.
2. **Value after 10 years**: Approximately R40,455.58.
3. **Estimated value after \( 6 \frac{1}{2} \) years**: Approximately R24,865.41.
4. **Estimated time to reach R14,500**: Approximately 3.14 years.
If you need further assistance or visual representation of the graph, please let me know!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución