If \( u(x)=x^{5}-x^{4}+x^{2} \) and \( v(x)=-x^{2} \), which expression is equivalent to \( \left(\frac{u}{v}\right)(x) \) ? \( x^{3}-x^{2} \) \( -x^{3}+x^{2} \) \( -x^{3}+x^{2}-1 \) \( x^{3}-x^{2}+1 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the expression equivalent to \( \left(\frac{u}{v}\right)(x) \), we need to divide \( u(x) \) by \( v(x) \): 1. Start with \( u(x) = x^{5} - x^{4} + x^{2} \) and \( v(x) = -x^{2} \). 2. The division can be rewritten as \( \frac{u(x)}{v(x)} = \frac{x^{5} - x^{4} + x^{2}}{-x^{2}} \). 3. This simplifies to \( -\left(\frac{x^{5}}{x^{2}} - \frac{x^{4}}{x^{2}} + \frac{x^{2}}{x^{2}}\right) = -\left(x^{3} - x^{2} + 1\right) \). Finally, we get: \[ -x^{3} + x^{2} - 1 \] Therefore, the expression equivalent to \( \left(\frac{u}{v}\right)(x) \) is \( -x^{3} + x^{2} - 1 \). So the correct answer is: \( -x^{3} + x^{2} - 1 \)
