The difference between the upper specification and the lower specification for a process is 0.70 . The standard deviation is 0.10 . Based on the given information, the process capability ratio, \( \mathrm{C}_{\mathrm{p}}= \) 1.17 (round your response to two decimal places). Based on the process capability ratio \( \left(\mathrm{C}_{\mathrm{p}}\right) \) for the given information, one can say that the process is 1 point(s) possible bery much capable not at all capable capable
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To determine the process capability ratio, \( \mathrm{C}_{\mathrm{p}} \), we use the formula: \[ \mathrm{C}_{\mathrm{p}} = \frac{\text{Upper Specification Limit} - \text{Lower Specification Limit}}{6 \times \sigma} \] Given that the difference is 0.70 and the standard deviation \( \sigma \) is 0.10, the calculation becomes: \[ \mathrm{C}_{\mathrm{p}} = \frac{0.70}{6 \times 0.10} = \frac{0.70}{0.60} \approx 1.17 \] With a \( \mathrm{C}_{\mathrm{p}} \) of 1.17, we can confidently say that the process is capable, meaning it has a good ability to produce items within specifications. This ratio essentially means that for every 6 standard deviations, the process can fit within the specification limits. A \( \mathrm{C}_{\mathrm{p}} \) between 1.0 and 1.33 suggests a capable process, while anything above 1.33 indicates an even higher capability. So, in this case, you can consider it capable!
