Which of the following is the correct formula for the standard deviation residuals, \( s_{e} \) ? \( s_{e}=s \sqrt{\frac{e_{1}+e_{2}+\cdots+e_{N}}{N-2}} \) \( s_{e}=\frac{e_{1}^{2}+e_{2}^{2}+\cdots+e_{N}^{2}}{N-2} \) \( s_{e}=\sqrt{\frac{e_{1}^{2}+e_{2}^{2}+\cdots+e_{N}^{2}}{N-1}} \) \( s_{e}=\sqrt{\frac{e_{1}^{2}+e_{2}^{2}+\cdots+e_{N}^{2}}{N-2}} \) \( s_{e}=\sqrt{\frac{e_{1}^{2}+e_{2}^{2}+\cdots+e_{N}^{2}}{N}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
Understanding the concept of residuals is essential in statistics, especially when dealing with regression analysis. Residuals are the differences between observed and predicted values, and analyzing them helps assess model accuracy. The standard deviation of these residuals, \( s_e \), is pivotal in evaluating how well your model predicts data. A small \( s_e \) suggests that the model is doing a good job, while a large \( s_e \) indicates that the predictions may be far off. When solving for standard deviation residuals, a common mistake is using the wrong denominator. Remember, when you're estimating population parameters from a sample, always use \( N - 2 \) (for simple linear regression), not \( N \). This adjustment accounts for the degrees of freedom, effectively ensuring a more accurate representation of variability in the data. Keep this in mind to avoid underestimating your residual variability!
