Pregunta
upstudy study bank question image url

For the purposes of constructing modified boxplots, outliers are defined as data values that are above \( \mathrm{Q}_{3} \) by an amount greater than \( 1.5 \times 1 \mathrm{QR} \) or below \( \mathrm{Q}_{1} \) by an amoun interquartile range. Using this definition of outliers, find the probability that when a value is randomly selected from a normal distribution, it is an outlier. The probability that a randomly selected value taken from a normal distribution is considered an outlier is (Round to four decimal places as needed.)

Ask by Carter Murray. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that a randomly selected value from a normal distribution is an outlier is approximately 0.0070.

Solución

To classify outliers in a boxplot for a normal distribution, the "fences" are defined as follows: • The lower fence is Q₁ − 1.5 × IQR • The upper fence is Q₃ + 1.5 × IQR For the standard normal distribution, we know: • Q₁ (the 25th percentile) ≅ –0.6745 • Q₃ (the 75th percentile) ≅ 0.6745 Thus the interquartile range (IQR) is:   IQR = Q₃ – Q₁ ≅ 0.6745 – (–0.6745) = 1.3490 Now, calculate the fences: 1. Lower fence = Q₁ − 1.5 × IQR   = –0.6745 − 1.5 × 1.3490   = –0.6745 − 2.0235   = –2.6980 2. Upper fence = Q₃ + 1.5 × IQR   = 0.6745 + 1.5 × 1.3490   = 0.6745 + 2.0235   = 2.6980 A data value will be considered an outlier if it is less than –2.6980 or greater than 2.6980. Now we compute the probability for these cases. For a value Z from the standard normal distribution:   P(outlier) = P(Z < –2.6980 or Z > 2.6980)        = 2 × P(Z > 2.6980) Using a standard normal table or calculator, we find:   P(Z > 2.6980) ≅ 0.00347 Therefore, the total probability is:   2 × 0.00347 ≅ 0.00694 Rounded to four decimal places, the probability is approximately 0.0070. Thus, the probability that a randomly selected value from a normal distribution is considered an outlier is 0.0070.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that a value randomly selected from a normal distribution is an outlier using the modified boxplot definition, we first calculate the thresholds for outliers. 1. Identify \( Q_1 \) (the first quartile) and \( Q_3 \) (the third quartile): In a normal distribution: - \( Q_1 \approx \mu - 0.675\sigma \) - \( Q_3 \approx \mu + 0.675\sigma \) 2. Calculate the interquartile range (IQR): \[ IQR = Q_3 - Q_1 \approx \mu + 0.675\sigma - (\mu - 0.675\sigma) = 1.35\sigma \] 3. Define the boundaries for outliers: - Upper boundary: \( Q_3 + 1.5 \times IQR = \mu + 0.675\sigma + 1.5 \times 1.35\sigma = \mu + 0.675\sigma + 2.025\sigma = \mu + 2.7\sigma \) - Lower boundary: \( Q_1 - 1.5 \times IQR = \mu - 0.675\sigma - 1.5 \times 1.35\sigma = \mu - 0.675\sigma - 2.025\sigma = \mu - 2.7\sigma \) 4. Using the normal distribution properties, find the probabilities: - The probability of being greater than \( \mu + 2.7\sigma \) and the probability of being less than \( \mu - 2.7\sigma \) can be found using the standard Z-scores. - For \( Z > 2.7 \), using a standard normal distribution table or calculator, \( P(Z > 2.7) \approx 0.0035 \). - For \( Z < -2.7 \), it is also \( P(Z < -2.7) \approx 0.0035 \). 5. Combine these probabilities: \[ P(\text{outlier}) = P(Z > 2.7) + P(Z < -2.7) \approx 0.0035 + 0.0035 = 0.0070 \] So, the probability that a randomly selected value from a normal distribution is considered an outlier is approximately \( \boxed{0.0070} \).

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad