Pregunta
upstudy study bank question image url

Taxes: The Internal Revenue Service reports that the mean federal income tax paid in the year 2010 was \( \$ 8040 \). Assume that the standard deviation is \( \$ 4700 \). The IRS plans to draw a sample of 1000 tax returns to study the effect of a new tax law. Part: \( 0 / 5 \) Part 1 of 5 (a) What is the probability that the sample mean tax is less than \( \$ 8000 \) ? Round the answer to at least four decimal places. The probability that the sample mean tax is less than \( \$ 8000 \) is

Ask by John Stephens. in the United States
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that the sample mean tax is less than \$8000 is approximately 0.3936.

Solución

We are given that the mean tax (μ) is $8040, the standard deviation (σ) is $4700, and the sample size (n) is 1000. The standard error (SE) of the sample mean is calculated as:   SE = σ/√n = 4700/√1000 ≈ 4700/31.62 ≈ 148.66 Next, we convert the sample mean of $8000 to a z-score using the formula:   z = (x̄ - μ) / SE = (8000 - 8040) / 148.66 ≈ -40 / 148.66 ≈ -0.269 Now, we need to find the probability that the sample mean is less than $8000, which is P(z < -0.269). Looking up a standard normal table or using a calculator:   P(z < -0.269) ≈ 0.3936 Thus, the probability that the sample mean tax is less than $8000 is approximately 0.3936.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that the sample mean tax is less than \( \$8000 \), we can use the Central Limit Theorem. Since the sample size is 1000, the sampling distribution of the sample mean can be approximated as normal. The mean of the sampling distribution is \( \$8040 \) and the standard deviation (also called the standard error) is calculated by dividing the population standard deviation by the square root of the sample size: \[ \text{Standard Error} = \frac{\sigma}{\sqrt{n}} = \frac{4700}{\sqrt{1000}} \approx 148.33 \] Next, we need to calculate the z-score for the sample mean of \( \$8000 \): \[ z = \frac{\bar{x} - \mu}{\text{Standard Error}} = \frac{8000 - 8040}{148.33} \approx -0.27 \] Now we can look up this z-score in the standard normal distribution table or use a calculator to find the probability. A z-score of \( -0.27 \) corresponds to an area of approximately \( 0.3936 \). Thus, the probability that the sample mean tax is less than \( \$8000 \) is \( 0.3936 \) when rounded to four decimal places: **The probability that the sample mean tax is less than \( \$8000 \) is 0.3936.**

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad