Pregunta
upstudy study bank question image url

\( \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^{3}-3 k+6}} \) By the an appropriate test to determine whether the series converges. \( \square \)

Ask by Romero Adkins. in the United States
Dec 06,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The series converges.

Solución

To determine whether the series \[ \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^{3}-3k+6}} \] converges, we can use the **Limit Comparison Test**. First, we need to analyze the behavior of the term \( \sqrt{k^3 - 3k + 6} \) as \( k \) becomes large. For large \( k \), the term \( k^3 - 3k + 6 \) behaves like \( k^3 \). Therefore, we can approximate: \[ \sqrt{k^3 - 3k + 6} \sim \sqrt{k^3} = k^{3/2}. \] This leads us to consider the series \[ \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^3}} = \sum_{k=2}^{\infty} \frac{1}{k^{3/2}}. \] The series \( \sum_{k=2}^{\infty} \frac{1}{k^{3/2}} \) is a \( p \)-series with \( p = \frac{3}{2} > 1 \), which is known to converge. Now, we apply the Limit Comparison Test. We compute the limit: \[ \lim_{k \to \infty} \frac{\frac{1}{\sqrt{k^3 - 3k + 6}}}{\frac{1}{\sqrt{k^3}}} = \lim_{k \to \infty} \frac{\sqrt{k^3}}{\sqrt{k^3 - 3k + 6}}. \] This simplifies to: \[ \lim_{k \to \infty} \sqrt{\frac{k^3}{k^3 - 3k + 6}} = \lim_{k \to \infty} \sqrt{\frac{1}{1 - \frac{3}{k^2} + \frac{6}{k^3}}}. \] As \( k \to \infty \), the terms \( \frac{3}{k^2} \) and \( \frac{6}{k^3} \) approach 0, so we have: \[ \lim_{k \to \infty} \sqrt{\frac{1}{1 - 0 + 0}} = \sqrt{1} = 1. \] Since the limit is a positive finite number, by the Limit Comparison Test, the convergence of \( \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^3 - 3k + 6}} \) is the same as the convergence of \( \sum_{k=2}^{\infty} \frac{1}{k^{3/2}} \). Since \( \sum_{k=2}^{\infty} \frac{1}{k^{3/2}} \) converges, we conclude that: \[ \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^3 - 3k + 6}} \text{ converges.} \] Thus, the series converges. \(\boxed{\text{converges}}\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine whether the series \( \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^{3}-3k+6}} \) converges, we can use the Comparison Test. First, we simplify the term in the series: For large \( k \), \( k^3 - 3k + 6 \approx k^3 \). Therefore, we can approximate the term: \[ \frac{1}{\sqrt{k^{3}-3k+6}} \approx \frac{1}{\sqrt{k^3}} = \frac{1}{k^{3/2}}. \] Now, we'll compare \( \frac{1}{\sqrt{k^{3}-3k+6}} \) to the simpler \( \frac{1}{k^{3/2}} \). Since we know that the p-series \( \sum_{k=2}^{\infty} \frac{1}{k^{3/2}} \) converges (as \( p = \frac{3}{2} > 1 \)), we proceed with the comparison. To formally use the Comparison Test, note that for sufficiently large \( k \) (specifically for \( k \geq 2 \)), we have: \[ k^3 - 3k + 6 \leq k^3 \] which implies \[ \sqrt{k^3 - 3k + 6} \leq \sqrt{k^3} \Rightarrow \frac{1}{\sqrt{k^{3}-3k+6}} \geq \frac{1}{k^{3/2}}. \] Thus, \( \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^{3}-3k+6}} \) behaves like \( \sum_{k=2}^{\infty} \frac{1}{k^{3/2}} \), and since the latter converges, so does the original series. Therefore, we conclude that the series \( \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^{3}-3k+6}} \) converges.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad