\( \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^{3}-3 k+6}} \) By the an appropriate test to determine whether the series converges. \( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To determine whether the series \( \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^{3}-3k+6}} \) converges, we can use the Comparison Test. First, we simplify the term in the series: For large \( k \), \( k^3 - 3k + 6 \approx k^3 \). Therefore, we can approximate the term: \[ \frac{1}{\sqrt{k^{3}-3k+6}} \approx \frac{1}{\sqrt{k^3}} = \frac{1}{k^{3/2}}. \] Now, we'll compare \( \frac{1}{\sqrt{k^{3}-3k+6}} \) to the simpler \( \frac{1}{k^{3/2}} \). Since we know that the p-series \( \sum_{k=2}^{\infty} \frac{1}{k^{3/2}} \) converges (as \( p = \frac{3}{2} > 1 \)), we proceed with the comparison. To formally use the Comparison Test, note that for sufficiently large \( k \) (specifically for \( k \geq 2 \)), we have: \[ k^3 - 3k + 6 \leq k^3 \] which implies \[ \sqrt{k^3 - 3k + 6} \leq \sqrt{k^3} \Rightarrow \frac{1}{\sqrt{k^{3}-3k+6}} \geq \frac{1}{k^{3/2}}. \] Thus, \( \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^{3}-3k+6}} \) behaves like \( \sum_{k=2}^{\infty} \frac{1}{k^{3/2}} \), and since the latter converges, so does the original series. Therefore, we conclude that the series \( \sum_{k=2}^{\infty} \frac{1}{\sqrt{k^{3}-3k+6}} \) converges.
