Pregunta
upstudy study bank question image url

Identifying Trig Ratios (No Diagram) Score: \( 0 / 5 \quad \) Penalty: 1 off Question In \( \triangle \mathrm{BCD} \), the measure of \( \angle \mathrm{D}=90^{\circ}, \mathrm{DC}=28, \mathrm{CB}=53 \), and \( \mathrm{BD}=45 \). What ratio represents the cosine of \( \angle \mathrm{B} \) ?

Ask by Ruiz Martinez. in the United States
Dec 16,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The cosine of angle \( \angle B \) is \( \frac{28}{53} \).

Solución

To find the cosine of angle \( \angle B \) in triangle \( \triangle BCD \), we can use the definition of cosine in a right triangle. The cosine of an angle in a right triangle is defined as the ratio of the length of the adjacent side to the length of the hypotenuse. Given: - \( \angle D = 90^\circ \) (right angle) - \( DC = 28 \) - \( CB = 53 \) - \( BD = 45 \) We need to find the cosine of angle \( \angle B \), which is the ratio of the length of the adjacent side to the length of the hypotenuse. The adjacent side to angle \( \angle B \) is \( DC = 28 \), and the hypotenuse is \( CB = 53 \). Therefore, the cosine of angle \( \angle B \) is given by: \[ \cos(\angle B) = \frac{DC}{CB} = \frac{28}{53} \] So, the ratio that represents the cosine of angle \( \angle B \) is \( \frac{28}{53} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the cosine of \( \angle \mathrm{B} \) in triangle \( \mathrm{BCD} \), we use the cosine ratio, which is defined as the adjacent side over the hypotenuse in a right triangle. For \( \angle \mathrm{B} \), the adjacent side is \( \mathrm{DC} = 28 \), and the hypotenuse is \( \mathrm{CB} = 53 \). Therefore, the cosine of \( \angle \mathrm{B} \) is given by: \[ \cos(\angle B) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{DC}{CB} = \frac{28}{53}. \] Real-world applications of trigonometry, particularly cosine ratios, are abundant! For example, engineers often rely on trig ratios when designing structures to ensure they have the right angles and lengths for stability. Cosine can help determine the height of a building or the length of a roof slope, making it a fundamental tool in architecture and construction projects. One common mistake when identifying trig ratios is confusing the sides relative to the angle. It’s essential to remember the relationships: in right triangles, the hypotenuse is always opposite the right angle, while the adjacent side is the one next to the angle in question. Make sure to visualize or even sketch the triangle to avoid mislabeling the sides, ensuring you use the correct lengths in your calculations!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad